Selenium Tutorials 32 Best Free Selenium Training Tutorials
Posted In | Automation Testing, Selenium Tutorials | Last Updated: "December 14, 2016"

After hundreds of requests from STH readers, today we are finally launching our FREE Selenium Tutorial
series. In this Selenium training series we will cover all Selenium testing concepts and its packages in detail
with easy to understand practical examples.

These Selenium tutorials are helpful for beginner to advanced level Selenium users. Starting from the very basic
Selenium concepts tutorial, we will gradually move on to the advanced topics like Framework creation,
Selenium Grid and Cucumber BDD.

Note: We will be increasing our article posting frequency for this series. Please don’t miss any tutorial. Keep
track of all the tutorials by bookmarking this page as we will keep updating it with links to all new Selenium
tutorials.

*hkhkkkhkhkhkhkhkhkhkhkhkhhkhhhkhhkhkhhkihhkhkhiiikiik

Here we are listing all the Selenium Training Tutorials for your handy reference.

List of Selenium Online Training Tutorials:

Selenium Basics:

. Tutorial #1 — Selenium Testing Introduction (Must Read)

. Tutorial #2 — Selenium IDE Features, Selenium Download and installation
. Tutorial #3 — My first Selenium IDE script (Must Read)

. Tutorial #4 — Creating script using Firebug and its installation

. Tutorial #5 — Locator Types: ID, ClassName, Name, Link Text, Xpath
. Tutorial #6 — Locator Types: CSS Selector

. Tutorial #7 — Locating elements in Google Chrome and IE
Selenium WebDriver:

. Tutorial #8 — Selenium WebDriver Introduction (Must Read)

. Tutorial #9 — Selenium WebDriver Installation with eclipse

. Tutorial #10 — My first Selenium WebDriver script (Must Read)
. Tutorial #11 — Introduction to JUnit

. Tutorial #12 — Introduction to TestNG (Must Read)
. Tutorial #13 — Handling Drop-downs

. Tutorial #14 — Looping and Conditional commands
. Tutorial #15 — Explicit and Implicit Waits

. Tutorial #16 — Handling Alerts/popups

. Tutorial #17 — Commonly used commands

. Tutorial #18 — Handling Web Tables, Frames, Dynamic Elements

. Tutorial #19 — Exception Handling

Selenium Framework:

. Tutorial #20 — Most popular Test Automation frameworks(Must Read)

. Tutorial #21 — Selenium Framework Creation & Accessing Test Data from Excel (Must Read)

. Tutorial #22 — Creating Generics and Testsuite

. Tutorial #23 — Using Apache ANT

. Tutorial #24 — Setting up Selenium Maven Project

. Tutorial #25 — Using Hudson Continuous integration tool
Advanced Selenium:

. Tutorial #26 — Logging in Selenium

. Tutorial #27 — Selenium Scripting Tips and Tricks

. Tutorial #28 — Database Testing using Selenium WebDriver

. Tutorial #29 — Selenium Grid Introduction (Must Read)

. Tutorial #30 — Automation Testing Using Cucumber and Selenium Part -1
. Tutorial #31 — Integration of Selenium WebDriver with Cucumber Part -2
Selenium Tips and Interview Preparation:

. Tutorial #32 — Selenium project test effort estimation

. Tutorial #33 — Selenium Interview Questions and Answers

*hhkkkhkhkkkhkhkkkhkkhkkhkhkkhkhkkhkikkhkkikkhkihkkhikkiik

Selenium Basic

Selenium Basics:

Tutorial #1 — Selenium Testing Introduction (Must Read)

Tutorial #2 — Selenium IDE Features, Selenium Download and installation
Tutorial #3 — My first Selenium IDE script (Must Read)

Tutorial #4 — Creating script using Firebug and its installation

Tutorial #5 — Locator Types: ID, ClassName, Name, Link Text, Xpath
Tutorial #6 — Locator Types: CSS Selector

Tutorial #7 — Locating elements in Google Chrome and IE

Tutorial #1 — Selenium Testing Introduction (Must Read)

Selenium Training Tutorials
After hundreds of requests from STH readers, today we are finally launching our FREE Selenium Tutorial
series. In this Selenium training series we will cover all Selenium testing concepts and its packages in detail

with easy to understand practical examples.

These Selenium tutorials are helpful for beginner to advanced level Selenium users. Starting from the very basic

Selenium concepts tutorial, we will gradually move on to the advanced topics like Framework creation,
Selenium Grid and Cucumber BDD.

Note: We will be increasing our article posting frequency for this series. Please don’t miss any tutorial. Keep
track of all the tutorials by bookmarking this page as we will keep updating it with links to all new Selenium
tutorials.

How to start Learning Selenium?
This is the best time to start learning Selenium testing by your own with the help of this free Selenium Training

series. Read tutorials, practice examples at your home, and put your queries in comment section of respective
tutorials. We will address all of these queries.

Experienced Selenium professionals — you too can take part in this series by providing answers to reader’s
queries in comments.

This is our serious effort to help you learn and master one of the most popular software testing tools!
Selenium Introduction:

We are delighted to launch our yet another series of software testing training tutorials. The belief behind
introducing this tutorial is to make you an expert in a widely used software test automation solution, Selenium.
In this series we will look at the various facets of Selenium. Selenium is not just a tool; it is a cluster of

independent tools. We will look into some of the tools in detail, providing practical examples wherever
applicable.

Before you jump in to reading this exciting and useful series, let us take a look at what it has got in store for

you.
Why Selenium?

As the current industry trends have shown that there is mass movement towards automation testing. The cluster
of repetitive manual testing scenarios has raised a demand to bring in the practice of automating these manual
scenarios.

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/category/software-testing-training/
http://www.seleniumhq.org/

The benefits of implementing automation test are many; let us take a look at them:
e Supports execution of repeated test cases
e Aids in testing a large test matrix
« Enables parallel execution
« Encourages unattended execution
« Improves accuracy thereby reducing human generated errors
e Saves time and money
All this results in to the following:
e High ROI
e Faster GoTo market
Automation testing benefits are many and well understood and largely talked about in the software test industry.

One of the most commonly asked question comes with this is —

o What is the best tool for me to get my tests automated?
e Isthere a cost involved?
e Isiteasy to adapt?
One of the best answers to all the above questions for automating web based applications is Selenium. Because:

e It’s open source

« have a large user base and helping communities
« have multi browser and platform compatibility
« has active repository developments

e supports multiple language implementations
First glance at Selenium

Selenium is one of the most popular automated testing suites. Selenium is designed in a way to support and
encourage automation testing of functional aspects of web based applications and a wide range of browsers and
platforms. Due to its existence in the open source community, it has become one of the most accepted tools
amongst the testing professionals.

Selenium supports a broad range of browsers, technologies and platforms.

/ Web-based
‘. Automated Testing _/

Open Source

P,

4 Multiple Programming &
Languages

Selenium supports a broad range of browsers, technologies and platforms
Selenium Components
Selenium is not just a single tool or a utility, rather a package of several testing tools and for the same reason it
is referred to as a Suite. Each of these tools is designed to cater different testing and test environment

requirements.
The suite package constitutes of the following sets of tools:

. i —
e Selenium Integrated Development Environment (IDE) EX&

o Selenium Remote Control (RC) ==
e Selenium WebDriver

e Selenium Grid @

Selenium RC and WebDriver, in a combination are popularly known as Selenium 2. Selenium RC alone is also
referred as Selenium 1.

http://www.softwaretestinghelp.com/category/software-testing-tools/
http://www.softwaretestinghelp.com/test-bed-test-environment-management-best-practices/
http://www.softwaretestinghelp.com/test-bed-test-environment-management-best-practices/
http://cdn2.softwaretestinghelp.com/wp-content/qa/uploads/2014/10/Selenium-intro-2.jpg
http://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2014/10/Selenium-intro-3.jpg
http://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2014/10/Selenium-intro-4.jpg

N
N

Selenium Grid

Selenium Packages - © www.SoftwareTestingHelp.com

Brief Introduction to Selenium tools

Selenium Core

Selenium is a result of continuous efforts by an engineer at ThoughtWorks, named as Jason Huggins. Being
responsible for the testing of an internal Time and Expenses application, he realized the need for an automation

testing tool so as to get rid of repetitive manual tasks without compromising with the quality and accuracy.

As a result, he built a JavaScript program, named as “JavaScriptTestRunner” in early 2004 that could
automatically control the browser’s actions which seemed very much similar to that of a user communicating

with the browser.

Henceforth, Jason started demoing the tool to the vast audience. Eventually the discussions were laid out to
categorize this tool in the open source category as well as its potential to grow as a re-usable testing framework
for other web based applications.

The tool was later on acclaimed with the name “Selenium Core”.

Selenium IDE (Selenium Integrated Development Environment)

Selenium IDE was developed by Shinya Kasatani. While studying Selenium Core, he realized that this
JavaScript code can be extended to create an integrated development environment (IDE) which can be plugged
into Mozilla Firefox. This IDE was capable of recording and playing back the user actions on a Firefox instance

to which it was plugged-in. Later on Selenium IDE became a part of Selenium Package in the year 2006. The
tool turned out a great value and potential to the community.

Selenium IDE is the simplest and easiest of all the tools within the Selenium Package. Its record and playback
feature makes it exceptionally easy to learn with minimal acquaintances to any programming language. With

several advantages, a few disadvantages accompanied Selenium IDE, thus making it inappropriate to be used in

cases of more advanced test scripts.

Advantages and disadvantages of Selenium IDE:

* Easy record and play
back

* Capable of converting
tests in html, Java, C# and
various other languages

* No prior programming

M language experience is
required

* Logging capabilities
using file logging plug-in

* Debug and set
breakpoints

* Flexibility & Extensibility

* A firefox plug -in, thus its
support is limited to firefox

only

* Doesn’t supports
iterations and conditional
statements

* Doesn’t supports error x
handling

*Doesn’t supports test
script dependency or
grouping

*Doesn’t supports
database testing

Advantages and disadvantages of Selenium IDE - © www.SoftwareTestingHelp.com

The disadvantages of IDE are in reality not disadvantages of selenium, rather just limitations to what IDE could
achieve. These limitations can be overcome by using Selenium RC or WebDriver.

Selenium RC (Selenium Remote Control)

Selenium RC is a tool which is written in java that allows a user to construct test scripts for a web based

application in which ever programming language he/she chooses. Selenium RC came as result to overcome

various disadvantages incurred by Selenium IDE or Core.

Loopholes and restrictions which were imposed while using Selenium Core made it difficult for the user to
leverage the benefits of the tool to its totality. Thus it made the testing process a cumbersome and a far reaching

task.

One of the crucial restrictions was same origin policy.

Problem of same origin policy:

The problem of same origin policy disallows to access the DOM of a document from an origin that is different
from the origin we are trying to access the document.

Origin is a sequential combination of scheme, host and port of the URL. For example, for a URL
http://www.seleniumhq.org/projects/, the origin is a combination of http, seleniumhg.org, 80 correspondingly.
Thus the Selenium Core (JavaScript Program) cannot access the elements from an origin that is different from
where it was launched.

For Example, if I have launched the JavaScript Program from “http://www.seleniumhgq.org/”, then I would be
able to access the pages within the same domain such as “http://www.seleniumhgq.org/projects/” or
“http://www.seleniumhq.org/download/”. The other domains like google.com, yahoo.com would no more be
accessible.

Thus, to test the application using Selenium Core, one has to install the entire application on the Selenium Core
as well as web server to overcome the problem of same origin policy.

Selenium |
Core :

“ 1
(Javascript
: |

I

I

U

Program) Cannotaccess the pages on a different
__________ domain/origin
Launched
http://www. https://google.com
Seleniumhq.org /
(Different Origin)
(Same Origin)

So, In order to govern the same origin policy without the need of making a separate copy of Application under
test on the Selenium Core, Selenium Remote Control was introduced. While Jason Huggins was demoing
Selenium, another fellow colleague at ThoughtWorks named Paul Hammant suggested a work around of same
origin policy and a tool that can be wired up with a programming language of our choice. Thus Selenium RC
came into existence.

Unlike selenium IDE, selenium RC supports a wide range of browsers and platforms.

~

 Selenium Remote Control Server | /

TS Client Libraries =

Selenium RC Supports - © www. SoftwareTestingHelp.com

Workflow Description

User creates test scripts in a desired programming language.

For every programming language, there is a designated client library.

Client library deports the test commands to the selenium server.

Selenium server deciphers and converts the test commands into JavaScript commands and sends them to
the browser.

Browser executes the commands using selenium core and sends results back to the selenium server
Selenium server delivers the test results to the client library.

There are a few pre-requisites to be in place before creating Selenium RC scripts:

A Programming Language — Java, C#, Python etc.

An Integrated Development Environment —Eclipse, Netbeans etc.
A Testing Framework (optional) — JUnit, TestNG etc.

And Selenium RC setup off course

Advantages and disadvantages of selenium RC:
Coming on to the advantages and disadvantages of selenium RC, refer the following figure.

10

* Supports programming languages
and constructs

* Supports a wide range of browsers
and platforms

* Supports creation of user defined
utilities like generics/exceptions to
customize framework

* Supports error handling and
database testing

* Supports test data driven testing

* Supports logging and capturing
screenshots

* Supports testing frameworks like
TestNG and Junit

* Test scripts do not directly
communicate with the browser,
selenium RC server needs to be
running to enable communication

* User is bound to have prior
programming knowledge

* Unable to handle alerts and
navigations efficiently

* Doesn’t support testing of WAP
based applications(iphone/android)

* Faster than selenium IDE but slower
than WebDriver

* Doesn’t support implementation of
listeners

*Unable to handle Ajax calls efficiently

Advantages and disadvantages of Selenium RC - © www. SoftwareTestingHelp.com

Selenium Grid

With selenium RC, life of a tester has always been positive and favorable until the emerging trends raised a
demand to execute same or different test scripts on multiple platforms and browsers concurrently so as to
achieve distributed test execution, testing under different environments and saving execution time remarkably.
Thus, catering these requirements selenium grid was brought into the picture.

Selenium Grid was introduced by Pat Lightbody in order to address the need for executing the test suites on

multiple platforms simultaneously.

Selenium WebDriver

Selenium WebDriver was created by yet another engineer at ThoughtWorks named as Simon Stewart in the
year 2006. WebDriver is also a web-based testing tool with a subtle difference with Selenium RC. Since, the
tool was built on the fundamental where an isolated client was created for each of the web browser; no

JavaScript Heavy lifting was required. This led to a compatibility analysis between Selenium RC and
WebDriver. As a result a more powerful automated testing tool was developed called Selenium 2.

WebDriver is clean and a purely object oriented framework. It utilizes the browser’s native compatibility to
automation without using any peripheral entity. With the increasing demand it has gained a large popularity and

user base.

Advantages and disadvantages of Selenium WebDriver:

Refer the following figure for the advantages and disadvantages of WebDriver.

* Doesn't require selenium server to be * A more complex API
started before executing test scripts

* User is bound to have prior
* Directly communicates with the programming knowledge
browser

* Doesn’t supports mobile testing
* A purely object oriented interface

* Migrating from selenium RC to

m * Supports dynamic finders WebDriver is a tiresome process
*» Offers a wide range of utilities and * Unable to test applications with x
classes that helps in handling alerts, flash/ flex objects

navigations, Ajax calls & dropdowns

* Supports testing of WAP based
applications(iphone/android)

* Support implementation of listeners

*Faster than Selenium RC

Advantages and disadvantages of Selenium WebDriver - © www.SoftwareTestingHelp.com

Selenium 3

Selenium 3 is an advance version of Selenium 2. It is a tool focused for automation of mobile and web
applications. Stating that it supports mobile testing, we mean to say that the WebDriver API has been extended
to address the needs of mobile application testing. The tool is expected to be launched soon in the market.

Environment and Technology Stack
With the advent and addition of each new tool in the selenium suite, environments and technologies became
more compatible. Here is an exhaustive list of environments and technologies supported by selenium tool set.

Supported Browsers

Browser Name Selenium IDE Selenium RC m
Yes Yes Yes
Google Chrome ' No Yes Yes
No Yes Yes
Opera No Yes Yes
Safari No Yes Yes
L No No Yes

No Partial Support Possible Partial/Full Support

Selenium Supported Browsers - © www. SoftwareTestingHelp.com

Supported Programming Langquages

12

Programming Language m Selenium RC WebDriver

No (Can generate code) Yes Yes
No (Can generate code) Yes Yes
No (Can generate code) Yes Yes
No (Can generate code) Yes Yes
No (Can generate code) Yes Yes
No (Can generate code) Yes Yes

Selenium Supported Languages - © www. SoftwareTestingHelp.com

Supported Operating Systems

Operating System Selenium IDE ' Selenium RC WebDriver
Windows Yes Yes Yes
MacOS ' Yes ' Yes | Yes
Linux | Yes . Yes | Yes
Solaris . Yes ‘ Yes ‘ Yes

Selenium Supported OSes . © www. Software TestingHelp.com

Supported Testing Frameworks

Testing Frameworks Selenium IDE Selenium RC WebDriver
JUnit

NUnit
RSpec
TestNG

Unittest

Robot Framework
SeleniumLibrary

Selenium Supported Frameworks - ® www. SoftwareTestingHelp.com

Conclusion
In this tutorial, we tried to make you acquainted with the Selenium suite describing its various components,
their usages and their advantages over each other.

Here are the cruxes of this article.

« Selenium is a suite of several automated testing tools, each of them catering to different testing needs.

o All these tools fall under the same umbrella of open source category and supports only web based
testing.

e Selenium suite is comprised of 4 basic components; Selenium IDE, Selenium RC, WebDriver, Selenium
Grid.

o User is expected to choose wisely the right Selenium tool for his/her needs.

o Selenium IDE is distributed as a Firefox plug-in. It is easier to install and use. User is not required to
possess prior programming knowledge. Selenium IDE is an ideal tool for a naive user.

« Selenium RC is a server that allows user to create test scripts in a desired programming language. It also
allows executing test scripts within the large spectrum of browsers.

13

o Selenium Grid brings out an additional feature to Selenium RC by distributing its test script on different
platforms and browsers at the same time for execution, thus implementing the master slave architecture.
e WebDriver is a different tool altogether that has various advantages over Selenium RC. The fusion of
Selenium RC and WebDriver is also known as Selenium 2. WebDriver directly communicates with the
web browser and uses its native compatibility to automate.
o Selenium 3 is the most anticipated inclusion in the Selenium suite which is yet to be launched in the
market. Selenium 3 strongly encourages mobile testing.
In the next tutorial, we would be discussing about the basics of Selenium IDE, its installation and its features.
We would also have a look at the basic terminologies and nomenclatures of Selenium IDE.

Next Selenium Tutorial: Introduction to Selenium IDE and its installation with detailed study on all the

features of Selenium IDE (coming soon)

A remark for the readers: While our next tutorial of the Selenium training series is in the processing mode,
meanwhile you can explore a bit about the Selenium suite and its tools by looking at its official website.

About the authors:

Shruti Shrivastava (our main author for this series), Amaresh Dhal, and Pallavi Sharma are helping us to bring
this series to our readers.

Shruti is currently working as a Senior Test Engineer with 4+ years of automation testing experience. She is an
ISTQB certified professional and also an active blogger, always interested in solving testing related problems.
Amaresh is having 5+ years of manual and automation testing experience with expertise in WebDriver, Grid
and frameworks.

Pallavi Sharma has more than 7 years rich experience of working in automation testing field with hands-on
Selenium and JAVA experience.

Stay tuned till then and share your views, comments and knowledge to help us groom. Also let us know if
you find anything that we missed out so that we can include them in the subsequent tutorials.

14

http://www.softwaretestinghelp.com/selenium-ide-download-and-installation-selenium-tutorial-2/

Tutorial #2 — Selenium IDE Features, Selenium Download and installation

Getting Started with Selenium IDE (Installation and its Features) — Selenium
Tutorial #2

Before moving ahead, let’s take a moment to look at the agenda of this tutorial. In this tutorial, we will learn all
about Selenium IDE, starting from its installation to the details about each of its features. At the end of this
tutorial, the reader is expected to be able to install Selenium IDE tool and play around with its features.

=> This is a 2nd tutorial in our free online Selenium training series. If you have not read the first Selenium
tutorial in this series please get started from here: Free online Selenium Tutorial #1

Note: This is quite a extensive tutorial with lots of images so allow it to load completely. Also click on image or
open in new window to enlarge images.

Introduction to Selenium IDE

Selenium integrated development environment, acronym as Selenium IDE is an automated testing tool that is
released as a Firefox plug-in. It is one of the simplest and easiest tools to install, learn and to go ahead with the
creation of test scripts. The tool is laid on a record and playback fundamental and also allows editing of the
recorded scripts.

The most impressive aspect of using selenium IDE is that the user is not required to possess any prior
programming knowledge. The minimum that the user needs is the little acquaintances with HTML, DOMS and
JavaScript to create numerous test scripts using this tool.

Being a Firefox plug-in, Selenium IDE supports only Firefox, thus the created test scripts could be executed
only on Firefox. A few more loopholes make this tool inappropriate to be used for complex test scripts. Thus,
other tools like Selenium RC, WebDriver comes into the picture.

So, before gripping on to the details of Selenium IDE, let’s have a look at its installation first.

Selenium IDE Download and Installation
For the ease of understanding, | have bifurcated the entire IDE installation process in the following
chunks/steps.

Before taking off, there is one thing that needs to be in place prior to the installation; Mozilla Firefox. You can
download it from here => Mozilla Firefox download.

15

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.mozilla.org/en-US/

Step #1: Selenium IDE download: Open the browser (Firefox) and enter the URL — http://seleniumhg.oro/ .
This would open the official Selenium head quarter website. Navigate to the “Download” page; this page

embodies all the latest releases of all the selenlum components. Refer the following figure.
[u Selenium - Web Browser A.. X \-l-

= &0 www.seleniumhq.org X | |8 - Google Pl 2

!: SelenlumHQ edit this page search se

Browser Automation Projects Download

What is Selenium?

Selenium automates browsers. That's it! What you do with that power is entirely up to
you. Primanly, it is for automating web applications for testing purposes, but is certainly

Step #2: Move under the selenium IDE head and click on the link present. This link represents the latest version
of the tool in the repository. Refer the following figure.

. ;‘ Se'en i u m HQ ':diLlM‘:_DOQL‘ search selenium:

€ Browser Automabon Projects EUEDOUSUE Documentation
Selensum Downloads Down'oads
Below s where you can find the latest releases of all the Selenium components
Latest Releases st of previous releases, source code, and additional nformation for Maven use
Java buid tool),

Previous Releases
Download Selenium IDE from this link

Source Code Selenium IDE

Selenium IDE is a Firefox plugin whach records a
this to either create simple scnpts or assist xploratory testing, It can also ¢
or WebDniver scrpts, though they tend to b€ somewhat bnttle and should be ¢©
onate to Selenium sort of Page Object-y structure for any piid of resiency.

th PayPal Dom:oad latest released verso
T nstall some plugens.

Step #3: As soon as we click on the above link, a security alert box would appear so as to safeguard our system
against potential risks. As we are downloading the plug-in from the authentic website, thus click on the “Allow”

Maven Information plays back user mteractons

eleased on 14/Sep/2014 or view the Ry

button.
Step #4: Now Firefox downloads the plug-in in the backdrop. As soon as the process completes, software

installation window appears. Now click on the “Install Now” button.

%‘ SeleniumHQ odit this page search selenium:
Browser Automation Projocts Documentation
Seclenium Downloads DOWﬂloads
Previous Releases | Install add-ons only from " whom you trust.
Source Code "b

Makcious software can damage your computer o¢ violate your pervacy.

Maven Information | gt
| | fexpe
You have asked to install the following 5 #ems: Fpover
to Selenium Seteniam 10 Ruby | it Aschor noe veriSed)
with PayPal htp//release seleniumhg. org/ seleriam-ide/2 5.0/ seleniunm . ide-2.5 Dxpe | *".'d_
Donate t
- Seteviam IDE (dutror not verited)
B - SEEE rp/redease seleniumhg.org/ selervam-ide/2 5.0/ selenium wde-2.50xp
Seleniam 1DE: Python Formatters (Author not verifled)
hitp/Sredesse seleniumhg ong/ selermam-ide/2.50/ selenum- sde-2.5 0 xpe Fpork
.| HRCs
€ bt NI K Bl el il
Click on 1nstall Now Button dstell Now | 1| Canced

16

http://www.seleniumhq.org/

Step #5: After the installation is completed, a pop up window appears asking to re-start the Firefox. Click on
the “Restart Now” button to reflect the Selenium IDE installation.

Step #6: Once the Firefox is booted and started again, we can see selenium IDE indexed under menu bar ->
Web Developer -> Selenium IDE.

ml @ Mozilla Firefox Start Paoe x l (2} SelDEReleaseN
New Tab » ... Bookmarks »
F¥ New Private Window History »
Edit P o Downloads
Find... & Add-ons
Save Page As... Options »
Email Link... Help »
= Prnt.. »
I Web Developer ’1 Toggle Tools Ctrls Shift+]
Full Screen Web Console Ctrl= Shift+K
Set Up Sync... Inspector Ctrle Shift« C
Exit Debugger Ctrl+Shift+S
Style Editor Shift« F7
Profiler Shift+FS
Network Ctrl=Shift«Q
Developer Toolbar Shift+F2
App Manager
Browser Console Ctrle Shift+)

Responsive Design View CtrlsShift+ M D
Scratchpad Shift+F4
Page Source Ctrl+U I
Get More Tools

Character Encoding ’
Work Offline
Launch Selenium Builder Ctrl«Al«B

[& Seienium IDE Ctri= Alt=5 l

Step #7: As soon as we open Selenium IDE, the Selenium IDE window appears.
Features of Selenium IDE

Let’s have a look at each of the feature in detail.

Menu Bar

Tool Bar

-
@ Selenium IDE 25.0 L=l

ile Edit Actions ions Help |

Base URL https://www.google.co.in/

Test case Pane

Log, Reference, Ul-Element

= Address Bar

Test steps Edit Box

= hE e @

ﬁ Table | Source

Untitled
Command Target Value
Command

[r— Target - Select

Runs: 01 Value

Failures: 0

: log- Ref Ul-Element | Rollup

& Rollup Pane

#1. Menu Bar

Log Level & Clear

Button

Menu bar is positioned at the upper most of the Selenium IDE window. The menu bar is typically comprised of

five modules.
e File Menu
e Edit Menu

e Actions Menu
e Options Menu

e Help Menu
A) File Menu
(@ Selenium IDE 250 - | Eh
(Ele] gt Adions Qptions Help
New Test Case Ctd+N |V v
Open... Ctr+0 , @ @
Save Test Case CtrlS
Save Test Case As...

File Menu is very much analogous to the file menu belonging to any other application. It allows user to:

o Create new test case, open existing test case, save the current test case.
o Export Test Case As and Export Test Suite As in any of the associated programming language
compatible with Selenium RC and WebDriver. It also gives the liberty to the user to prefer amid the

18

available unit testing frameworks like jUnit, TestNG etc. Thus an IDE test case can be exported for a
chosen union of programming language, unit testing framework and tool from the selenium package.
o Export Test Case As option exports and converts only the currently opened Selenium IDE test case.

o Export Test Suite As option exports and converts all the test cases associated with the currently opened

The programming laguage
format in which the test
case would be exported

The testing framework

IDE test suite.
o Close the test case.
-
@ Selenium IDE 2.5.0 LE\M‘
Edit Actions Options Help
New Test Case CtrleN ¥ -
Open... Ctrl+0 | @
Save Test Case Ctrl+S
iR Save Test Case As... } il
Exports only the :
T 4 }ﬁy\ ? o
current test case —-Il Export Test Cace e I I ity
Recent Test Cases > Ruby / Test::Unit / WebDriver
Add Test Case.. CtrleD Ruby / RSpec / Remote Control
Properties.. Ruby / Test::Unit / Remote Control
T Python 2 / unittest / WebDriver
est Suits
oew T : 'e Python 2 / unittest / Remote Control
pen Test Suite... - F
Java {)Unit 4 FebO:
Save Test Suite D «
Java / JUnit 4 / WebDriver Backed
Save Test Suite As... :
h - Java / JUnit4 / Remote Control
Exports the entire — Export Test Suite As... »I ; BT, c :
testsuite (all the test P P 5 ava / JUnit 3 / Remote Controf
cases associated with Java / TestNG / Remote Control
the current test suite) Close (X) Ctrl+W C# / NUnit / WebDriver
Faiures o1l =/ NUnitF Remote Control I_ e
| Log | Reference | Ur-Element | Rollup | Infor Clear

The Selenium IDE test cases can be saved into following format:

e HTML format

The Selenium IDE test cases can be exported into following formats/programming languages.

« java (IDE exported in Java)
o rb (IDE exported in Ruby)

e py (IDE exported in Python)
e s (IDE exported in C#)

ExampleTest.html

Notice that with the forthcoming newer versions of Selenium IDE, the support to formats may expand.

B) Edit Menu

Python 2/ unittest / Remete Control

Jova/ Mot / WebDiwver |

Java / Wait 4 / WebDriver Backed
Java [Nait 4 / Remote Control

in which the generated
code would comply

The tool from the
selenium tool suite

e et

19

~ —
@ ExampleTesthtml - Selenium IDE 2.5.0 * [() S

Eile [Edit] Actions Qptions Help

Bas Undo Ctrl+ 2 -
- Redo Ctrl+ Y @ Q@
T Cut Ctrl+ X
Unti Ctri«C B T
" f Sopy Target Value
Exar Paste CtrisV
/gfe_rd=cr&&ei=..,
Delete Del
d=gbqfq
Select All Ctrl+A td=obata sulerdian
Insert New Command id=gbqft
Insert New Comment

Command - I
T | Terget [select | [Fina |
Runs: 0 Value
Failures: 0|
l Log | Referencel Ul-Element l Rollup | Infor Clear ‘

. —

Edit menu provides options like Undo, Redo, Cut, Copy, Paste, Delete and Select All which are routinely
present in any other edit menu. Amongst them, noteworthy are:

e Insert New Command — Allows user to insert the new command/test step anywhere within the current
test case.
e Insert New Comment — Allows user to insert the new comment anywhere within the current test case to
describe the subsequent test steps.
Insert New Command
The new command would be inserted above the selected command/test step.

Command Target Value
open /gfe_rd=cr8iei=5TwOU._...
click id=qbafq
| s id=gbafg seleoium
Newly inseted :
command ek =g0af0

Now the user can insert the actual command action, target and value.

20

Command Target Value

open /?gfe_rd=cr8ei=57wDU._...

click id=gbgfq

type id=gbgqfq selenium

typeAndWait id=test Newly inserted command |
click id=gbqfb

Insert New Comment
In the same way we can insert comments.

Command Target Value

open /7gfe_rd=cr8ei=57TwDU_...

click id=gbgfq

type id=gbgfq selenium

typeAndWait id=test Newly inserted command
Inserting new com... ‘
click id=gbqfb

The purple color indicates that the text is representing a comment.

C) Actions Menu

p
@ Selenium IDE 240 =)
File Edit Options Help
BaseURL | v Record int/ =
Fast || = -
Executes the current Play entice test suite
test suite and test case | Test Case Play current test case |
‘Unﬁﬂgd Pause / Resume
| 2 rget Value
Step
Fastest ©
Faster () Execution speed can
Slower (=) be controlled using
Slowest @) these options
Breakpoints and startpoints
can be applied to break and Toggle Ereakpoint
start the execution at 3 | Set/ Clear Start Point
particular test step Execute this command
correspondingly
Command =
P Teoe - | Find
Runs: o Vat

Actions Menu equips the user with the options like:

o Record — Record options fine tunes the Selenium IDE into the recording mode. Thus, any action made
by the user on the Firefox browser would be recorded in IDE.

o Play entire test suite — The option plays all the Selenium IDE test cases associated with the current test
suite.

o Play current test case — The option plays the current Selenium IDE test case that has been
recorded/created by the user.

21

o Pause / Resume — User can Pause/Resume the test case at any point of time while execution.

e Toggle Breakpoint — User can set one or multiple breakpoint(s) to forcefully break the execution at any
particular test step during execution.

o Set/ Clear Start Point — User can also set start point at any particular test step for execution. This
would enable user to execute the test case from the given start point for the subsequent runs.

o To deal with the page/element loads, the user can set the execution speed from fastest to lowest with
respect to the responsiveness of the application under test.

D) Options Menu

@ Selenium IDE 2.5.0 |). Sy
— o ea— -

Eile Edit Actions g’_)hons | Help

Base URL https://w Options... >

M > Format > @

Table | source | Clipboard Format »
Reset IDE Window
Command Clear history » jVolue

Options menu privileges the user to set and practice various settings provided by the Selenium IDE. Options
menu is recommended as one of the most important and advantageous menu of the tool.

Options Menu is primarily comprised of the following four components which can be sub-divided into the
following:

Options Menu
| [[l

Options Format Clipboard Format Reset IDE Window

N L |
l

Selenium IDE List of combination of
Options programming
language, unit testing
framework and
Selenium tool

Options
Selenium IDE Options dialog box

To launch Selenium IDE Options dialog box, follow the steps:

1. Click on Options Menu

22

2. Click on the Options
A Selenium IDE Options dialog box appears. Refer the following figure.

_
Selenium IDE Options

[_G_fd_\g[ﬂ- | Formats | Plugins | Locator Builders | WebDriver |

Encoding of test files

Default timeout value of recorded command in milliseconds (305 = 30000ms)
30000

Selenium Core extensions (user-extensions.js)

Selenium IDE extensions

Tips for extensions: Close and reopen Selenium IDE window to make changes effect.
You can specify multiple files separated by commas.

V] Remember base URL

"] Record assertTitle automatically

] Record absolute URL

"] Activate developer tools

7] Enable experimental features

] Disable format change warning messages
[¥] Start recording immediately on open

Reset Options [ok | [cancea |

Selenium IDE Options dialog box aids the user to play with the general settings, available formats, available
plug-ins and available locators types and their builders.

Let’s have a look at the few important ones.

General Settings

Selenium IDE Options)

= 5¢"€'B||mem I PIugins[Locnor Builders | WebDriver
General Settings Encoding of test files
Default timeout value of recorded command in milliseconds (30s = 30000ms)
| 30000 = Set test step
Selenium Core e ™3 execution speed
T Bmwse...J
Enhance the Selenium Selenium IDE extensions
IDE capabilities b/ —
addm;ex(ensmnvs L Brovens J
Tips for extensions: Close and reopen Selenium IDE window to make changes effect
You can specify multiple files separated by commas
V! Remember base URL
Record assertTitle automatically
Record absolute URL
Activate developer tools Set standard options
Enable experimental features
Disable format change waming messages
71 Start recording immediately on open

Load default 3
Settings

= [~wll-d}—i:::;;:;:::‘“

o Default Timeout Value — Default Timeout Value represents the time (in milliseconds) that selenium
would wait for a test step to execute before generating an error. The standard timeout value is 30000
milliseconds i.e. 30 seconds. The user can leverage this feature by changing the default time in cases
when the web element takes more/less than the specified time to load.

« Extensions — Selenium IDE supports a wide range of extensions to enhance the capabilities of the core
tool thereby multiplying its potential. These user extensions are simply the JavaScript files. They can set
by mentioning their absolute path in the text boxes representing extensions in the Options dialog box.

o Remember base URL — Checking this option enables the Selenium IDE to remember the URL every
time we launch it. Thus it is advisable to mark it checked. Un-checking this option will leave the base
URL field as blank and it will be re-filled only when we launch another URL on the browser.

o Record assertTitle automatically — Checking this field inserts the assertTitle command automatically
along with the target value for every visited web page.

Base URL http://in.yahoo.com/ -
sist Slow b= D- [(-) @
Test Case 1 T‘”":“"’“id
Untitled * :
Command Target Value
clickAndWait id=logo
assertTitle Yahoo India
[]

« Enable experimental features — Checking this field for the first time imports the various available
formats into the Selenium IDE.
Formats

24

Selenium IDE Options

Xl

General | Formats | Plugins [Locator Builders | WebDrives

All the formats are

Python 2/ unit...
Python 2 / unit...
Java /Unitd /...
Java /Unitd /...
listed here Java /JUnitd /...
Java/JUnit3 /...
Java / TestNG /...
C#/ NUnit / W...
C#/NUnit / Re...

HTML I lava / JUnit 4 / WebDriver

Ruby / RSpec/ ...
Ruby / Test:Un...
Ruby / RSpec / ...
Ruby / Test:Un...

Variable for Selenium instance
driver

Package

com.example.tests

Header

package ${packageName};
import java.util.regex.Pattern;

import java.util.concurrent.TimeUnit;
import org.junit.”;

Footer

}

[A |
Reset Options

Formats tab displays all the available formats with selenium IDE. User is levied with the choice to enable and

@After
public void tearDown() throws Exception {
driver.quit();

Indent

|
1 |2 spaces
|| Show Selenese

Rename Delete Source l

)

disable any of the formats. Refer the following figure.

Selenium IDE Plugins

Plug-ins tab displays the supported Firefox plug-ins installed on our instance of Selenium IDE. There are

The dummy structure
of the converted code
is displayed here

a number of plug-ins available to cater different needs, thus we can install these add-ons like we do other plug-

ins. One of the recently introduced plug-in is “File Logging”. In the end of this tutorial, we will witness how to

install and use this plug-in.

With the standard distribution, Selenium IDE comes with a cluster of following plug-ins:

e Selenium IDE: Ruby Formatters
e Selenium IDE: Python Formatters
e Selenium IDE: Java Formatters

e Selenium IDE: C# Formatters

These formatters are responsible to convert the HTML test cases into the desired programming formats.

25

http://docs.seleniumhq.org/projects/ide/plugins.jsp

Selenium IDE Options oo
General | Formats | Plugins | Locator Builders | WebDriver |
V] Automatically disable plugin provided code on plugin errors
[¥] Disabling plugin should completely disable the addon in Firefox
Selenium IDE: Ruby F Selenium IDE: Ruby Formatters
Default plug-_lns Sden_-um IDE: Python Formatters Ruiby codé formatbers for Selesiiim IDE
associated with Sel IDE: Java Formatt
Selenium IDE Selenium IDE: C= Formatt Version230 Description of
| | Created By Adam Goucher the plug-in
Developed by Samit Badle
Visit website
*| I Disable code provided by this plugin
(J A restart of Selenium IDE is required if
/] changed.
|' Reset Options [ok | [cance |

Locator Builders
Locator builders allow us to prioritize the order of locator types that are generated while recording the user
actions. Locators are the set of standards by which we uniquely identify a web element on a web page.

Selenium IDE Options o o
| General | Formats | Plugins | Locator Builders | WebDriver |

ui Drag and drop the locator builders on the left to change their order
id

link

name

css
dom:name
xpath:link
xpath:img
xpath:attrib...
xpath:idRela...
xpath:href
dom:index
xpath:positi...

Formats
Formats option allows user to convert the Selenium IDE test case (selenese commands) into desired format.

E) Help Menu

As Selenium has a wide community and user base, thus various documentations, release notes, guides etc. are
handily available. Thus, the help menu lists down official documentation and release notes to help the user.

Programming
Language in which
the test case would
be converted

The unit testing

framework

The tool from the
Selenium suite

#2. Base URL Bar

(@ Selenium IDE 250 s
File Edit Actions Help
BaseURL https//w Qptions... = -
S p[Fomat »| o [Hrm B
Py St Chploord+ N Ruby} RSpec / WebDriver
Reset IDE Window Ruby / Test::Unit / WebDriver
Command Clear history > Ruby / RSpec / Remote Control
Ruby / Test:Unit / Remote Control
Python 2 / unittest / WebDriver
f Python 2 / unittest / Remote Control
WebDriver
Java / JUnit 4 / WebDriver Backed
Java / JUnit 4 / Remote Control
g Java / JUnit 3 / Remote Control
Java / TestNG / Remote Control
Command C# / NUnit / WebDriver
./ ’..
Value
leog \ Reference] Ul-Element] Rollup | Infor Clear

Base URL bar is principally same as that of an address bar. It remembers the previously visited websites so that

the navigation becomes easy later on.

27

@ SeleniumIDE250* = scouia(Sh
File Edit Actions OQptions Help

Base URL |http://www.softwaretestinghelp.com/ -
ast http://www.softwaretestinghelp.com/
- https://mail.google.com/
Table | 3 .
L2%] https://www.google.co.in/
Command Target Value
| open /resources |
" clgkAndWait link=Testing DOWNLOADS

: Command to navigate to the
;| | baseURL appended with the
i' target value

Command open v
L Target /resources FSelect] [Find]
Value

Now, whenever the user uses “open” command of Selenium IDE without a target value, the base URL would be
launched on to the browser.

Accessing relative paths

To access relative paths, user simply needs to enter a target value like “/download” along with the “open”
command. Thus, the base URL appended with “/downloads” (http://docs.seleniumhg.org/resources) would be
launched on to the browser. The same is evident in the above depiction.

#3. Toolbar

éltt Slow ba b- l (a ‘

Toolbar provides us varied options pertinent to the recording and execution of the test case.

. M Playback Speed — This option allows user to control the test case execution speed from
fast to slow.
. BE Play test suite — This option allows user to execute all the test cases belonging to the current
test suite sequentially.
= Play test case — This option allows user to execute the currently selected test case.

. Pause — This option allows user to pause the current execution.

Step — This option allows user to step into the test step.

28

. © Rollup— This option allows user to combine multiple test steps to act like a single command.

. @ Record — This option allows user to start/stop the recording of user actions. The hollow red ball
indicates the start of the recording session whereas the solid red ball indicates the end of the recording
session. By default, the Selenium IDE opens in the recording mode.

#4. Editor

Editor is a section where IDE records a test case. Each and every user action is recorded in the editor in the

same order in which they are performed.

The editor in IDE has two views, namely:

1) Table View
Table} Source Editor

Table View

Command Target Value

open fdownload/

chickAndWait link=Projects

type id=name Shruti

ichickAndWait link=Selenium IDE —

clickAndWait link=Browser Automation

It is the default view provided by Selenium IDE. The test case is represented in the tabular format. Each user
action in the table view is a consolidation of “Command”, “Target” and “Value” where command, target and
value refers to user action, web element with the unique identification and test data correspondingly. Besides
recording it also allows user to insert, create and edit new Selenese commands with the help of the editor form

present in the bottom.

2) Source View

29

e[}

SCULYPs/ Vo
<td>id=name</td>
<td>Shruti</td>

<td>clickindWaic</td>
<td>link=Selenium IDEC/td>

Source View (HTML
Format)

<edd</ed>

<td>clickAndWait</td>
<td>link=Browser Autcomation</Td>
<cdx</Td>

</

</tbody></table>
</body>
</htal>

« m

m

Test Step

The test case is represented in the HTML format. Each test step is considered be a row <tr> which is a
combination of command, target and value in the separate columns <td>. Like any HTML document, more
rows and columns can be added to correspond to each Selenese command.

Editor Form lets the user to type any command and the suggestions for the related command would be

populated automatically. Select button lets the user to select any web element and its locator would be fetched
automatically into the target field. Find button lets the user find the web element on the web page against a
defined target. Value is the test input data entered into the targets with which we want to test the scenario.

' Table | Sourcei

~| | select

Find

addlLocationStrategy

Command | 2ddLocationStrategyAndWait
addScript

= addScriptAndWait

clickAndWa] sddSelection

type addSelectionAndWarit

clickAndWa a"OWNaﬁVCxPC‘h

- allowNativeXpathAndWait
|

clickAndWa altKeyDown
altKeyDownAndWait
altKeyUp
altKeyUpAndWait
answerOnNextPrompt

|

Command clickAndWant

Target llink: Browser Automation

Value |

#5. Test case pane

30

Test Case

Represents the r—
failed (Red) and Failed Testcase
passed (Green) 'Passed Testcase *

test cases

Represents the
status of the entire |
ke D —
Total no. of executed Runs:

test cases Failures: 1

At the instance we open Selenium IDE interface, we see a left container titled “Test case” containing an untitled

test case. Thus, this left container is entitled as Test case pane.

Test case pane contains all the test cases that are recorded by IDE. The tool has a capability of opening more
than one test case at the same time under test case pane and the user can easily shuffle between the test cases.
The test steps of these test cases are organized in the editor section.

Selenium IDE has a color coding ingredient for reporting purpose. After the execution, the test case in marked

either in “red” or “green” color.

e Red color symbolizes the unsuccessful run i.e. failure of the test case.

e Green color symbolizes the successful run of the test case

« Italso layouts the summary of the total number of test cases executed with the number of failed test
cases.

o If we execute a test suite, all the associated test cases would be listed in the test case pane. Upon
execution, the above color codes would be rendered accordingly.

#6. Log Pane

31

log Rderencel Ul-EkmentI Rollup Clur I
Debug

{info] Executing: |type | id=name | Shruti |
[error] Element id=name not found Info
[info] Changed test case

(info] Changed test case Wam
[info] Changed test case Fror
R

Log pane gives the insight about current execution in the form of messages along with the log level in the real
time. Thus, log messages enable a user to debug the issues in case of test case execution failures.

The printing methods / log levels used for generating logs are:
o Error — Error message gives information about the test step failure. It may be generated in the cases
when element is not found, page is not loaded, verification/assertion fails etc.
e Warn — Warning message gives information about unexpected conditions.
« Info — Info message gives information about current test step execution.
o Debug — Debug messages gives information about the technicalities in the backdrop about the current
test step.
Logs can be filtered with the help of a drop down located at the top-right corner of the footer beside the clear
button. Clear button erases all the log messages generated in the current or previous run.

Generating Logs in an external medium
Recently introduced “File Logging” plug-in enables the user to save log messages into an external file. File

Logging can be plugged in to IDE like any other plug-in. Upon installation, it can be found as a tab named “File

Logging” in the footer beside the Clear button.

I Log | Referencel ULEIementl Rollup ‘ II File Logging (Info)<| Debug- Clear
[debug] dgf frameElement[this.uniqueld]=| Sh&w Options... 7 -
[debug] getCurrentWindow newPagelLoad

[error] Actual value 'Software Testing Ce....
Testing Help' did not match 'Software Testing Cmplete Guide © Info

Log Level 4 Debug

Software Testing Help' Wam
[debug] commandError s
[debug] testComplete: failed=true

7 [rm—rp—)

32

[Selensium IDE Opticns]

General | Formats | Plugins | Locator Builders | WebDriver | FileLogging

R The external file
Log File |C:\Users\shrshrivastava\Desktop\Test-Repon.txt] where we want to
save log messages

Leave the log file name empty to stop writing to the log file,

Answer yes to the ovenwrite prompt. The log file will always be appended to, l

File Logging Level |Info v Setting log level
The log level for the log file can be independent of the log level used to display log I

messages in the log pane.

| Adding time stamp to
| log messages
[7] Save log messages in Unicode I

|| Log time stamp with log messages }

All log messages will be written in real time to the log file.

Reference Pane
Reference Pane gives the brief description about the currently selected Selenese command along with its
argument details.

Il.og Reference Ul-EluIm]Rollup;
type(locator, value)

® locator - an element locator
@ value - the value to ty
Sets the value of an saput field, as though you typed it in.

Can also be usad to sat the valus of combo boxss, chack boxes, atc. In these cases, valus should be the valus of the
option selected, not the vistbie text.

Ul-Element Pane
Ul — Element Pane allows Selenium user to use JavaScript Object Notation acronym as JSON to access the page
elements. More on this can be found in Ul-Element Documentation under Help Menu.

Rollup Pane
type 1d=gbafq Selenium
dlick id=gbafb .
clickAndWait link=Selenium - Web Br... rolp Naigate

Rollup Pane allows the user to roll up or combine multiple test steps to constitute a single command termed as

“rollup”. The rollup in turn can be called multiple times across the test case.

Conclusion

33

Through this tutorial, our objective was to make you familiar and accustomed with the basic terminologies and
nomenclatures of Selenium IDE. We also presented a detailed study on all the features of Selenium IDE.

Here are the cruxes of this tutorial:

Selenium IDE is an automated testing tool which supports record and play back.

User is not required to have any prior programming knowledge except for the basic understanding of
HTML, JavaScript and DOM.

The menu bar allows user to create, save, edit and convert the recorded Selenium IDE test scripts. It also
allows user to set formats and plug-ins.

Toolbar allows user to set the test execution speed, to pause and resume test case, to roll up commands
etc.

Roll ups combines more than one test step and thus the rolled up commands acts and executes as a
single command.

Editor allows user to record or create test scripts. Editor has two views “table” and “source”.

In table view, each test step is comprised of a command, target and a value.

Source view displays the test case in the HTML format.

Test case pane shows a comprehensive list of failed and passed test cases with the relevant color-coding.
Log Pane displays the test execution heath in the form of message.

Log messages can be saved in a file using “File Logging” plug-in.

Reference pane shows the description of every selected command.

Ul-Element and Rollup are generally used while creating advance Selenium IDE scripts.

Next Tutorial #3: Now that we are acquainted and comfortable with Selenium IDE and its features, in the next

tutorial we would practice these features by creating our own test script using Selenium IDE.

A remark for the readers: While our next tutorial of the Selenium series is in the processing mode, install the
tool and the required utilities to get started. Experience the features by playing around with the tool till we meet
next with the next tutorial on “My first Selenium IDE script”.

Stay tuned till then and share your views, comments and knowledge to help us groom. Also let us know if

you find anything that we missed out so that we can include them in the subsequent tutorials.
Finally, if you like this tutorial please consider sharing it with friends and on social media sites.

34

http://www.softwaretestinghelp.com/selenium-ide-script-selenium-tutorial-3/

Tutorial #3 — My first Selenium IDE script (Must Read)

My First Selenium IDE Script — Selenium Tutorial #3

This tutorial is by far one of the most important tutorials to get a hold on Selenium IDE.

This is the 3rd tutorial in our multi-part Selenium Tutorials series. We started this Selenium online Training
series from this tutorial where you can find list of all tutorials covered.

In the introductory tutorials, we got a brief idea about Selenium IDE and its features.

Going ahead, we would be exercising and implementing these features in real time by creating our own very
first Selenium IDE script. We would also peek into the details of recording fundamentals and available types of
commands in Selenium IDE. Apart from that we would also have a glance at the modifications which can be
incorporated into our Selenium scripts.

Before jumping on to the creation of Selenium IDE script, let us take a moment to introduce elementary
information about the application under test (AUT).

As a specimen, we would be using “Gmail” — an email service designed by Google. | believe because of its
unbounded popularity, it needs no more introductions. The URL we would be using is

“https://accounts.google.com”. I have also created dummy credentials to represent test data.

Creating First Selenium IDE Script

So let us now create our first script using Selenium IDE.

The entire script creation process can be classified into 3 chunks:

Process #1: Recording — Selenium IDE aids the user to record user interactions with the browser and thus the
recorded actions as a whole are termed as Selenium IDE script.

Process #2: Playing back — In this section, we execute the recorded script so as to verify and monitor its
stability and success rate.

Process #3: Saving — Once we have recorded a stable script, we may want to save it for future runs and
regressions.

Let us now see their implementation.

Process #1: Recording a test script
Scenario
e Open “https://accounts.google.com”.
o Assert Title of the application
o Enter a valid username and password and submit the details to login.

35

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/selenium-ide-download-and-installation-selenium-tutorial-2/

o Verify that the user is re-directed to the Home page.
Step 1 — Launch the Firefox and open Selenium IDE from the menu bar.
Step 2 — Enter the address of application under test (“https://accounts.google.com”) inside the Base URL

textbox.
(@ selenium IDE 250 o B i
File Edit Actions Options Help
https:.//'accounts.google.coml] -
ast Slow PE b= ' @
Ta;ﬁTSoutcej

Step 3 — By default, the Record button is in ON state. Remember to tune it ON if it is in OFF state so as to
enable the recording mode.

r‘ Selenium IDE 2.5.0 lim‘

File Edit Actions Options Help

Base URL https://accounts.google.com| v

5!3!_5'"‘ PE p= ‘ ® Recording is "ON" @

by default
Table | Source

Step 4 — Open the application under test (https://accounts.google.com) in the Firefox.
Sign in with your Google Account

[¥] Stay signed in Need help?

Create an account
Step 5 — Verify if the application title is correct. To do so, right click anywhere on the page except the
hyperlinks or images. The right click opens the Selenium IDE context menu listing few of the commands. To
get an entire list, select “Show Available Commands” option. This will open another menu containing rest of
the available and applicable commands. Select “assertTitle Sign in — Google Accounts” option to verify the
page title.

36

open />enviceLognp tpsSATRLE B2 2CCOUNtS.gOOgH..

N Inspect Element with irebug [Sssenttesign in - Google Accounts]
open /Servicel ogin?passive=12096008 continue=hitps %:3A%2F %2Faccounts.googL... assentValue
verifyValue assetText //dvi2)/dnvi2] eactOne account. All of Google. Sign in with your Googl..
verifyElementPresent //divi2)/dni2) assentTable

| Show All Available Commands | essertBlementPresent //d{2Ydnd2]

verifyTitle Sign in - Google Accounts
verifyValue

Password verifyText //divi2)/divi2] exact:One account. All of Google. Sign in with your Googl..

verifyTable

BT
waitForTitle Sign in - Google Accounts

As soon as we click on “assertTitle Sign in — Google Accounts” option, a test step would be included /appended

in the Selenium IDE editor.

@ SeleniumIDE25.0* m! ==
File Edit Actions Options Help
Base URL https://accounts.google.com/ -

S=—=x PEPE U0

Table i‘—SQuKQ |

| Command Target Value
open /Servicelogin?passive=12096...
Iassefﬂitle Sign in - Google Accounts

Test step is included
in the editor pane

Step 6 — Enter a valid username in the “Email” Textbox of Gmail.
Step 7 — Enter a valid password in the “Password” Textbox of Gmail.
The simulation of the same user actions can be seen in the Selenium IDE test editor.

Notice that for the ease of understanding, | have already created test credentials. | would strictly advise the
readers to create their own credentials instead of using these.

37

e —
@ SelenumIDE250° " | P=REE ™
File Edit Actions Options Help
a CCO U nt Al I Of G Base URL https://accounts.google.com/ -
S, PE P= |@ ©
Sign in with your Google Accod| | 720" | source|
| Command Target Value]
open /Sesvicelogin?passive=1209...
|assertTitle Sign in - Google Accounts
"l |type id=Email TestSelenium1607@gmail.com
1 tyee id=Passwd TestSelenium
TestSelenium1607@gmail.com
Command v
eeccovcccnoe Target Select J [Find]
Value

AT YT

ILog|RM«me]ll¢Emmlﬂohp‘

type(locator, value) ‘ _FI

Arguments:
® locator - an element locator

[¥) Stay signed in Need h

Step 8 — Click on the “Sign in” button to complete the login process.
User should be re-directed to the home page provided the credentials entered are correct.

Step 9 — At the end, we would end the recording session by tuning the record button into OFF state. Below is
the recorded script.

@ seleniumie250° L elO
File Edit Actions Options Help
Base URL https://accounts.google.com/ -
| =222, PE P= 2| @ Recording stopped e | @
Table | source —
Command Target Value
open /Servicelogin?passive=12096...
assertTitle Sign in - Google Accounts
| ltype id=Email TestSelenium1607@gmail.com
: type id=Passwd TestSelenium
clickAndWait id=signin

Process #2: Playing back / executing a test script
Now that we have created our first Selenium IDE script, we would want to execute it to see if the script is stable

enough. Click on the playback button to execute the script.

'@ SeleniumIDE250* =~
File Edit Actions Options Help
Base URL https://accounts.google.com/ v
M PE|Ib= ;@ Plays the current test case @

38

Post execution, all the test steps would be color coded in green for the successful run. The same would be
evitable from the test case pane.

@ Selenium IDE 250 E=ggoy X

(Ele Edt Actions Qptions Help
Base URL https://accounts.google.com/

G PE P |@ @

«

Test Case Table }orgq(’“
| Command Target Value
open /Servicel oginlpassive...
assentTitle Sign in - Google Acco...
All the test steps are : T 2
color coded in green for type id=Emaal estSeleniuml60789.-..
a successful execution, Itype id=Passwd TestSelenium
Jekckanawait id=signin
.
Command chckAndWait .
Over-all test case status is Target id=sagnin v oot |wufind
Passed signified by the Runs: 1 Value l
green color, Fadures: 0

log Rdmcl Ul-Element | Rollup Infor Clear

| -
[info] Executing: |assertTitle | Sign in - Google Accounts | |]
[info] Executing: [type | id=Emai | TestSelenum 1607 @gmail.com | .
[info] Executing: [type | id=Passwd | TestSelenium |

[info] Executing: |chickAndwart | id=signin | | -

Execution Logs

For unsuccessful execution or test case failure, the failed test step would be highlighted in red. And the test case
pane would mark the test case execution as failure.

Process #3: Saving a test script

Once, we have played back the script, now it’s time to save the created test script.

Step 1 — To save the test script, Click on the File menu and select “Save Test Case” option.

Step 2 — The system will prompt us to browse or enter the desired location to save our test case and to provide
the test script name. Furnish the test name as “Gmail_Login” and click on the “Save” button.

The test script can be found at the location provided in the above step. Notice that the test script is saved in
HTML format.

. » Test Scripts
— S ————

’ Include in library » Share with »

~

Name
es

top & Gmail_Login.html

Using Common features of Selenium IDE
Setting Execution speed
39

While testing web applications, we come across several scenarios where an action performed may trigger a page
load. Thus we must be cognizant enough while dealing such scenarios.

So to avoid failures while playing back these test scenarios, we can set the execution speed to be minimal. Refer
the following figure for the same.

File Edit Actions Options Help
Base URL https://accounts.google.com/

Fast SIog I PE p= | @

Table | Source

Using “Execute this command” option
Selenium IDE allows the user to execute a single test step within the entire test script without executing the

entire test script. “Execute this command” is the option which makes this obtainable.

“Execute this command” option can be used at times when we want to debug/see the behavior of a particular
test step.

“Execute this command” option can be used in the following four ways:

#1. Using Actions tab from the Menu bar

[@ Gmail_Login.htm - Selenium IDE 2.5.0
Options Help

Base URL ' B«ofd
ast .
: Play entire test suite
Table | so Play current test case
[1l Pause / Resume
| Comn
| Step 3
{open five=12096...
‘assert] Fastest © tcounts
, Faster (-)
Test step to be executed ||[}| [type =

is selected =iype I Slower (+)
| | clickAd Slowest ()

Toggle Breakpoint
Set / Clear Start Point
Click on this option to|li*| | .]
execute the selected : M'
command Conmsad: (ype
] Target id=Passwd

#2. Using short cut key (“X”)
#3. Right click the test step and select “Execute this command”

40

; Command Target

open /Servicelogin?passive=12096...

assertTitle Sign in - Google Accounts

type id=Email

clickAndWai Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Del

Command Insert New Command

Target Insert New Comment

Value Clear Al

| Toggle Breakpoint B
Log | Referet Set/Clear Start Point S

type(locator, v I Execute this command X

#4. Double click the test step
In all the above cases, user is expected to select the test step which he / she want to execute.

Steps to be followed:

Step 1 — Launch the web browser and open the target URL (“https://accounts.google.com”), Select the test step

that we desire to execute. Remember to open correct web page to mitigate the chances of failure.

Step 2 — Press “X” to execute the selected test step. Alternatively, one can use other ways too.

Step 3 — Notice that the selected test step is executed. The test step would be color coded in green for success or
red for failure. At the same time, the test step would be simulated into an action on the web browser.

Note that the user is responsible to bring the script before executing the test step and Firefox in context. There is
a probability of failure if the user has not opened the legitimate web page.

Using Start point
Selenium IDE allows the user to specify a start point within a test script. The start point points to the test step
from where we wish to start the test script execution.

Start point can be used at times when we do not desire to execute the entire test script starting from the
beginning rather we customize the script to execute from a certain step.

Start point can be set and clear in the following three ways:
#1. Using Actions tab from the Menu bar

41

The test step to
be marked as a
start point for
execution

Set / Clear
start point
from here

#2. Using short cut key (“S”)

#3. Right click the test step and select “Set/Clear Start Point”. Menu similar to above image will be displayed.
In all the above cases, user is expected to select the test step from where he wants to start the execution prior to

setting start point.

As soon as the user has marked the test step to indicate the start point, an icon gets affixed to it.

-,
@ Gmail_Login.html - Selenium IDE 2.5.0
Eile Edit Options Help
Base URL , Record
ast $
‘ Play entire test suite
Table | So Play current test case
[| Pause / Resume
' Comn
’ Step
‘open
ﬁassert'l Fastest (0)
»: type Faster (-)
.H pe ‘ Slower (+)
| |clickad ~ Slowest@
Togﬂreakpoint
’ Set / Clear Start Point
Execute this command

Command Target Value

open /ServiceLogin?passive=12096...

assertTitle Sign in - Google Accounts

type id=Email TestSeleniuml1607@gmail.com
P type id=Passwd TestSelenium
|clickAndWait id=signin

Now whenever we execute the test script, it execution would be started from the start point i.e. fourth line (type

| id=Passwd | TestSelenium) of the test script.

Notes

e There can be one and only one start point in a single script.
e The start point can be cleared in the same way it was set.
o User is responsible to bring the script after applying start point and Firefox in context. There is a

probability of failure if the user has not opened the legitimate web page.

Using Break point

Selenium IDE allows the user to specify break points within a test script. The break points indicate Selenium
IDE where to pause the test script.

Break points can be used at times when we desire to break the execution in smaller logical chunks to witness the
execution trends.

Break point can be set and clear in the following three ways:
e Using Actions tab from the Menu bar
o Right click the test step and select “Toggle Breakpoint™.
o Using short cut key (“B”)
As soon as the user has marked the test step to indicate the break point, an icon gets affixed to it.

Command Target Value

open /Servicelogin?passive=12096...

assertTitle Sign in - Google Accounts

type id=Email TestSelenium1607@gmail.com
(0type id=Passwd TestSelenium

clickAndWait id=signin

Now whenever we execute the test script, the execution pauses at the break point i.e. fourth line (type |
id=Passwd | TestSelenium) of the test script.

Apply multiple breakpoints

Selenium IDE allows user to apply multiple breakpoints in a single test script. Once the first section of the test
script is executed, the script pauses as and when the breakpoint is reached. To execute the subsequent test steps,
user is required to execute each of the test steps explicitly.

; Command Target Value

open /ServiceLogin?passive=12096...

IUO assertTitle Sign in - Google Accounts

type id=Email TestSelenium1607@gmail.com
| clickAndWait id=signin

In the above test script, the execution pauses at the line “assertTitle | Sign in — Google Accounts”. After
explicitly executing this test step, the control moves to the next test step in sequence “type | id=Email |
TestSelenium1607@gmail.com”. Thus, user needs to explicitly execute this test step. The similar trend is
followed for rest of the subsequent steps.

43

Thus, this feature lets the user to spend more time executing each step and reviewing the outcomes of the
previously executed test step.

Notes

e There can be as many break points as you wish in a single script.

o The break point can be cleared in the same way it was set.
Using Find Button

One of the most crucial aspects of Selenium IDE test scripts is to find and locate web elements within a web

page. At times, there are web elements which have analogous properties associated with them, thus making it
challenging for a user to identify a particular web element uniquely.

To address this issue, Selenium IDE provides Find button. The Find Button is used to ascertain that locator
value provided in the Target test box is indeed correct and identifies the designated web element on the GUI.

Let us consider the above created Selenium IDE test script. Select any command and notice the target text box.
Click on the Find button present just beside the Target text box.

Notice that the corresponding web element would be highlighted in yellow with a fluorescent green border

around it. If no or wrong web element is highlighted, then the user is required to rectify the issue and would
need to impose some other locator value.

r =
. Gmail_Loginhtml - Selenium IDE 25.0 o) et
S . i 09!
ign in to continue to Gmai
- 0 SHL | Ble Edt Actions Options Help
| Base URL https://accounts.google.com/ -
S BE P= @ Q@
Table | Source
Command Target Value
open /ServiceloginTpassive=12096..
assentTitle Sign in - Google Accounts
The web element 'l fype id=Email TestSelenium1607 @gmail.com|
w .Ou:f},m m‘gr iwvgh:nc type id=Passwd TestSelenium
Qvery ime forthe clickAndWait id=signin

corresponding target
value

8
Click on the Find “l Command type
button to locate PrOtay-sgrredT * Sy e et = Find I
elements on the

Value TestSelenium1607 @gmail.com

web page

Thus, this procedure makes the user assured about the target value being used and that it corresponds to the
correct web element on the GUI.

Using Other Formats
Converting Selenium IDE test scripts to Other Programming Languages

44

Selenium IDE supports conversion test scripts into set of programming languages from a default type (HTML).
The converted test scripts cannot be played back using Selenium IDE until and unless it is reverted back to
HTML. Thus the conversion is beneficial and constructive only when we are executing it from other tools of

Selenium Suite.

Step 1 — Click on the options tab under the menu bar and select the programming language format under format
option in order to convert the test script into our desired format.

@ Gmail_Loginhtml - Selenium IDE 2.5.0 * (2 @) To convert the test script
File Edit Actions Mﬁp into desired format, Click
BaseURL httpsi//a Options. | - o e s

st 1 (Programming Language)
A P|___Format | o |HmmL HTML is the default
Table | Source Clipboard Format 4 Ruby / RSpec / WebDriver format provided by
R Reset IDE Window Ruby / Test:Unit / WebDriver Selenium IDE
| Command Clear history » Ruby / RSpec / Remote Control
open T TSEICELOGINTPEIVESTZ0 by / Test:Unit / Remote Control
assertTitle Sign in - Google Accounts Python 2 / unittest / WebDriver
| |type id=Email Python 2 / unittest / Remote Control
type id=Passwd Java / JUnit 4 / WebDriver
chckAndWsit id=signin Java / JUnit 4 / WebDriver Backed
Java / JUnit 4 / Remote Control
X Java / JUnit 3 / Remote Control |_ Avallable Programming
Java / TestNG / Remote Control Language formats
Comeand C# / NUnit / WebDriver
Target C= / NUnit / Remote Control |

Step 2 — As soon as we select our Desired Programming language format (“Java / JUnit4 / WebDriver” in our

case), a prompt box appears which says “Changing format is now marked experimental! If you continue,
recording and playback may not work, your changes may be lost and you may have to copy and paste the test in
a text editor to save. It is better to make a copy of your test cases before you continue. Do you still want to

proceed?” Click “OK™ to continue.

Table view i.e. the HTML

@ Gmail_Loginhtmi - Selenium IDE 25.0 * G=31

file Edit Actions Qptions Help
Base URL https://accounts.google.com/

Fast % | ()

view is disabled and the
source view is enabled

Table | Source l

oY

bbb i oovgins v L)
private WebDriver driver:

private Sctring baseUrzl;

private boolean acceptiiextilert = true;

private StringBuffer verificationErrors = new StringBuffer(

@Betore

public void setUp() throws Exception {
driver = new FirefoxDriver(}:
baselrl = “https://accounts.google.com/*;

The converted java
code

Thus, the above converted code can be executed by using WebDriver.

driver.manage () .timecuts().izplicitlywWaic (30, TizmeUnit.SE
)

Test

public void teatGmaillogin() throws Exception (
driver.get(baseUrl + "/Servicelogin?passive=1209600scontiy
asserctEquals(“Si in - Google Accounts™, driver.getlitle

« m »

45

Mark that editing or modifying Selenium IDE test scripts from Source View is not advisable. If done so, the
tool might introduce several repercussions. Several known bugs are already associated with it.

Selenium IDE Commands
Each Selenium IDE test step can chiefly be split into following three components:

e« Command
e Target
e Value
Command Target Value
type id=Passwd TestSelenium

String Jat needs to be
Actionneedsto The web element gntered in the web

be performed tointeract with glement

Types of Selenium IDE commands
There are three flavors of Selenium IDE commands. Each of the test step in Selenium IDE falls under any of the
following category.

e Actions

e Accessors

e Assertions
Actions
Actions are those commands which interact directly with the application by either altering its state or by
pouring some test data.

For Example, “type” command lets the user to interact directly with the web elements like text box. It allows
them to enter a specific value in the text box and as when the value is entered; it is showed on the Ul as well.

Another example is “click” command. “click” command lets the user to manipulate with the state of the
application.

In case of failure of an action type command, the test script execution halts and rest of the test steps would not
be executed.

ACCEessors

46

Accessors are those commands which allows user to store certain values to a user defined variable. These stored
values can be later on used to create assertions and verifications.

For example, “storeAllLinks” reads and stores all the hyperlinks available within a web page into a user defined
variable. Remember the variable is of array type if there are multiple values to store.

Assertions
Assertions are very similar to Accessors as they do not interact with the application directly. Assertions are used
to verify the current state of the application with an expected state.

Forms of Assertions:

#1. assert — the “assert” command makes sure that the test execution is terminated in case of failure.

#2. verify — the “verify” command lets the Selenium IDE to carry on with the test script execution even if the
verification is failed.

#3. waitFor — the “waitFor” command waits for a certain condition to be met before executing the next test
step. The conditions are like page to be loaded, element to be present. It allows the test execution to proceed
even if the condition is not met within the stipulated waiting period.

Commonly used Selenium IDE commands

Command Description A
ments
open Opens a specified URL inthe 1
browser.
assertTitle, VerifyTitle Returns the current page title 1
and compares it with the
specified title
assertElementPresent, Verify / Asserts the presence 1
verifyElementPresent of an element on a web page.
assertTextPresent, Verify / Asserts the presence 1
verifyTextPresent of a text within the web page.
type, typeKeys, Enters a value (String) inthe 2
sendKeys specified web element.
Click, clickAt, Clicks on a specified web 1
clickAndWait element within a web page.
waitForPageToload Sleeps the execution and 1
waits until the page is loaded
completely.

47

#Argu

Command Description
ments

waitForElement Sleeps the execution and 1
Present waits until the specified

element is present
chooseOkOnNext Click on ”OK” or “Cancel” 0
Confirmation, button when next
chooseCancelOn confirmation box appears.

NextConfirmation
Conclusion
In this tutorial, we tried to make you acquainted with the creation of Selenium IDE scripts. We also briefed you
about the usage of various Selenium features.

Here are the cruxes of this article.

e Test script in Selenium IDE can be created using Record and Playback feature.

e The script creation mechanism can be divided into 3 processes — Recording, Playing
back and Saving the test script.

o Selenium IDE allows the user to execute a single test step within the test script without executing the
entire test script. “Execute this command” is the option which makes this obtainable.

o User is leveraged to set the execution speed from the option within the toolbar.

o User can define any test step as a Start point. Thus, the execution will always initiate from that
particular test step only.

e User can set multiple Break points to pause the execution at a certain test step.

o User can find and verify if the provided target value corresponds to the correct web element within the
web page using Find

« Changing the source view to other formats is not recommended as there is a probability of loss of data.

e Remember to keep a copy of HTML test script before converting the test script into other non HTML
formats.

e There are majorly three types of commands — Actions, Accessors and Assertions.

« Actions directly interact with the application and alter its state.

e Accessors are used to store an elements property in a user defined variable.

o Assertions are used to check if a specified condition is met or not.

o Assertions can further be categorized as verify, assert and waitFor commands.

o Verify makes sure that the test script execution is never halted if even if the verification fails.

e Assert lets no further execution of the test script in case of failure.

o WaitFor waits for a stipulated period for a certain condition to meet.

e Some of the Selenium IDE commands which are used commonly are:

48

open
assertTitle / VerifyTitle

AssertForElementPresent / VerifyForElementPresent
AssertForTextPresent / VerifyForTextPresent

type / typeAndWait / sendKeys

click /clickAt / clickAndWait

waitForPageToload

waitForElementPresent

chooseOkOnNextConfirmation / chooseCancelOnNextConfirmation

Next Tutorial #4: There is another tool which plays a very important role in assisting us to create effective test

scripts known as “Firebug”. Firebug helps us in inspecting the properties of web elements and web pages. Thus
the next tutorial is comprised of installation of Firebug and its usability. We would also create a test script
manually using firebug and Selenium IDE.

Note: Do not miss the next tutorial because of its great importance with respect to our forthcoming tutorials on
WebDriver.
As usual let us know your queries in comments below.

49

http://www.softwaretestinghelp.com/firebug-for-selenium-scripts-selenium-tutorial-4/

Tutorial #4 — Creating script using Firebug and its installation
How to Use Firebug for Creating Selenium Scripts — Selenium Tutorial #4

In the previous tutorial, we learned how to create automated test scripts using Selenium IDE and its recording
feature. We also flipped through populous features of Selenium IDE. We aimed at harbingering the reader with
the most vital features and commands of Selenium IDE.

Just a reminder — this is our 4th tutorial in free Selenium training series.
Now that you are accustomed and capable of creating automated scripts using recording mode of Selenium IDE,
let us move ahead with another tool which plays a very important role in assisting us to create effective test

scripts known as “Firebug”. Firebug helps us in inspecting the properties of web elements and web pages.

Thus, this tutorial is comprised of installation of Firebug and its usability.

Take a note that the content of this tutorial is not only applicable in context of Selenium IDE; rather it can be
applied to each and every tool of Selenium suite. Thus | would preferably be using term Selenium instead of
Selenium IDE.

In this tutorial lets learn how to use Firebug add-on for creating Selenium scripts. In the process we will also

learn how to install Firebug.
Introduction to Firebug

Firebug is a Mozilla Firefox add-on. This tool helps us in identifying or to be more particular inspecting HTML,
CSS and JavaScript elements on a web page. It helps us identifying the elements uniquely on a webpage. The
elements can be found uniquely based on their locator types which we would be discussing later in this tutorial.

How to Install Firebug?
For the ease of understanding, we would bifurcate the installation process into the following steps.

Step -1: Launch the Mozilla Firefox browser and navigate to this Firebug add-on download page. The URL

takes us to Firefox add-ons section.
Step -2: Click on the “Add to Firefox” button present on the webpage. Refer the following figure for the same.

50

http://www.softwaretestinghelp.com/selenium-ide-script-selenium-tutorial-3/
http://www.softwaretestinghelp.com/selenium-ide-download-and-installation-selenium-tutorial-2/
http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://addons.mozilla.org/en-US/firefox/addon/firebug/

, ADD-ONS

EXTENSIONS | THEMES | COLLECTIONS | MORE...

A » Extensions » Firebug

a2 Firebug :.:2.6

4 by Joe Hewitt, Jan Odvarko, robcee, FirebugWorkingGroup

Firebug integrates with Firefox to put a wealth of dev
while you browse. You can edit, debug, and monitor (
any web page...

Step-3: As soon as we click on the “Add to Firefox” button, a security alert box would appear, click on the

“Allow” button now.
Step-4: Now Firefox downloads the add-on in the backdrop and a progress bar is displayed.

Step-5: As soon as the process completes, software installation window appears. Now click on the “Install

Now” button.

', ADD-ONS E

EXTENSIONS | THEMES | COLLECTIONS | MORE.

A » Extensions » Firebug

Software Installation =)
o Firebug 1§
% by Joe Hewitt, J4 | L Install add-ons only from authors whom you trust,
Firebug integrd | - Malicious software can damage your computer or violate your privacy,
while you browy |

any web page.d | you have asked to install the following item:

4+ AddtoF d’ Firebug (Author not verified)
% hetps://addons.mozilla.org/fieefox/ downloads/latest/1843/ addon-1843- latestapilsrcs

Enjoy this ad:
The developer of
to the Mozilla

_—

o

Step-6: As soon as the installation completes, a pop up appears saying that the firebug has been installed

successfully. Now choose to close this pop up.
Note: Unlike Selenium IDE, we are not required to restart the Firefox to reflect the firebug installation, rather it

comes readily.
Step-7: Now to launch firebug, we can opt either of the following ways:

51

e PressF12
o Click on the firebug icon present in the extreme top-right corner of the Firefox window.

23 Al -

e Click on Firefox menu bar -> Web Developer -> firebug -> Open Firebug.
Step-8: Now the firebug can be seen at the bottom of the Firefox window.
Now that we have downloaded and installed firebug, let’s move ahead with the types of locators that we would
be creating using firebug.

Creating Selenium Script using Firebug
Unlike Selenium IDE, In Firebug, we create automated test scripts manually by adding multiple test steps to
form a logical and consistent test script.

Let us follow a progressive approach and understand the process step by step.

Scenario:
e Open “https://accounts.google.com”.
o Assert Title of the application
o Enter an invalid username and invalid password and submit the details to login.
Step 1 — Launch the Firefox and open Selenium IDE from the menu bar.
Step 2 — Enter the address of application under test (“https://accounts.google.com”) inside the Base URL
textbox.

L | (2)

@ Selenium IDE 25.0
i File Edt Actions
5!!! Slow bA! b_ ! (-) O

Test Case lTable Source

Enter the URL of
Application Under Test

Step 3 — By default, the Record button is in ON state. Remember to tune it OFF state so as to disable the
recording mode. Notice if the recording mode is in ON state, it may result in recording our interactions with the
web browser.

@ll'— On State
l._

@ OFF State

Step 4 — Open the application under test (https://accounts.google.com) in the Firefox.
Step 5 — Launch Firebug in the web browser.

52

Sign in with your Google Account

Launched Firebug

Email

Cod :'1 |
%‘“u‘l 8 ¢|:i°|anm1umtv|cs Script DOM Net Cookies

b | Edit | body < html

¢ IDOCTYSE him?
<!DOCTYPE html>

<html lang="en" webdriver="true">
* <head>

Step 6 — Select the empty test step within the Editor.
Table | Source|

Command Target Value

Selected first empty test step

Step 7 — Type “open” in the command text box present in the Editor Pane. The “open” command opens the

specified URL in the web browser.

@ Selenium IDE 25.0 * e B S

File Edit Actions Options Help

Base URL https://accounts.google.com/ v
SGE—=t BE p= |@ ©
Test Case | | Table i.5°u'“1

Untitled * I

Command Target Value

fopen I

‘ Opens the specified URL in
the web browser

Matching suggestions
are auto populated

Command open
_ Target o
) openWindow

Ru.ns: ° Value openWindowAndWait
Failures: 0

Recommendation: While typing commands in the command text box, user can leverage the feature of auto
selection. Thus, as soon as the user types a sequence of characters, the matching suggestions would be auto
populated.

User can also click on the dropdown available within the command text box to look at all the commands
provided by Selenium IDE.

Step 8 — Now, motion towards the Firebug section within the web browser, expand “head” section of the
HTML code. Notice the HTML tag <title>. Thus to assert the title of the webpage, we would require the value
of the <title> tag.

11
K| C 2| = | console | HTMLw | €SS script DOM Net Cookses
5| Edit | body < html
= <htm=l lang=“en™ webdrivers“true®>

= <head>
<mata charset="utf-g8%>

<RetA nanestui " contente widsh=300, inisisl-scele=l">

Copy the title from here

<titlel 3t og TITIT”
<atyle>

<style media="screen and (max-widsh: E£00px), screen and (max-heighs: EO0O0px)“>

i <style mediam"acreen and (max-widch:@ SE0px) ">

<style>

 <link cypem"text/cas™ rels"stylesheet”™ href="//fonts.googleapis. com/cas?family=OpantSan

<ssyle>

R TR

<style>

Copy the title of the webpage which is “Sign in — Google Accounts” in our case.

Step 9 — Select the second empty test step within the Editor.
54

Step 10 — Type “assertTitle” in the command text box present in the Editor Pane. The “assertTitle” command
returns the current page title and compares it with the specified title.

@ seemocrsa T T i
[File Edit Actions Qptions Help |

Base URL https;//_accqunts.googlé.c‘gm_/ }‘

M PERP= o |@
Test Case || | Table | 500'“1
Untitled *

Command Target Value

open

assertT

Command |assertT

_ Target assertTable

s assertText
s 0 Value assertTextNotPresent
| Failures: 0

assertTextPresent

I Log I Reference l UI-El

Step 11 — Paste the title copied in step 8 into the Target field of the second.

55

@ Selenium IDE 25.0* con|u(Sl

Eile Edit Actions Options Help
BaseURL _ https://accounts.google.com/ -
st PEP= |0 @
Table | Source
Command | Target | Value
open
assertTitle Sign in - Google Accounts
Command assertTitle h
Target Sign in - Google Accounts Select] [Find J
Value

Step 12 — Now select the third empty test step in the Editor Pane
Step 13 — Type “type” command within the command text box. The “type” command enters a value in the

specified web element on to the GUL.

@ Selenium IDE 250 * e=mrey X

File Edit Actions Options Help
Base URL https://accdunts.google.com/ v

P PEP= | @ @

Table l Source

Command Target Value
open

assertTitle Sign in - Google Accounts

"| |type

Command

Target

Value

Step 14 — Now switch to the web browser, bring the mouse cursor to the “Email” textbox within the login form
and press a right click.

Cut
Copy
Go

Paste

Delete

Select All

One account. /

I
{
Add a Keyword for this Search...
Sign in with your (

View XPath

Inspect Element (Q)

Launch Selenium Builder

|

‘ILRJ Inspect Element with Firebug
\ open /Servicelogin?passive=12096008
assertTitle Sign in - Google Accounts
verifyTitle Sign in - Google Accounts
verifyValue id=Email

verifyElementPresent id=Email

Show All Available Commands

]

Choose “Inspect Element with Firebug”option. Notice that the Firebug automatically highlights the

corresponding HTML code for the web element i.e. “Email Textbox”.

Conscle | HTML~ | CSS Saipt DOM Net Cooloes

« form#gaia_loginform « div.card « divamain « div.wrapper < body < html

<input L= "Emalil” class="" type=“essil"” spellcheck="false™ valus="" placebolder="Eaail" mamg="Email">
pu

<input Aide“Dasswd™ clasa="" cypes“pazsvoxzd® placehclder="lassvord” names"Dasawd*>
<input ide“signin®™ classs"re-button re-button-subsic™ cypes"sulisic®™ values“Sign ia™ names"signin®™>

Step 15 — The HTML code in the above illustration manifests the distinct property attributes belonging to the
“Email” text box. Notice that there are four properties (ID, type, placeholder and name) that uniquely identify
the web element on the web page. Thus it’s up to the user to choose one or more than one property to identify
the web element.

Thus, in this case, we choose ID as the locator. Copy the ID value and paste it in the Target field of the third test

step prefixed with “id=""to indicate Selenium IDE to locate a web element having ID as “Email”.

57

ﬁlll Dlow Pl b- | o
T";;'séum
Command Target Value
open
pssentTitle Sign in - Google Accounts
id=Email I
v] Stay signed in
Copy and Pasted ID attribute in
the Target Column
Create an account
Command type -
S MIMUE sl DO = Target id=Email [select | Find
<« form#gaia_lopinform < div.card « dv.main < divwrapper < body < html Vaioe
| ——— —
I Log = Reference UI—EIemenl] Rollup |
=q\
type(lecator, value)
1 ail</label
1" spellchecke*false" values"* placehold i

Make a note that Selenium IDE is case sensitive, thus type the
as it is displayed in the HTML code.

® locator - an element locator
® vahse - the value to type
e R SN i e

attribute value carefully and precisely the same

Step 16 — Click on the Find button to verify if the locator selected finds and locates the designated Ul element

on the web page.

Step 17 — Now, the next step is to enter the test data in the Value textbox of the third test step within the Editor

Pane. Enter “InvalidEmaillD” in the Value textbox. User can alter the test data as and when it is desired.

@ Selenium IDE 25.0* -7'— :'- LEtlE-
File Edit Actions Options Help
Base URL https://accounts.google.com/ ~
LS pE p= |@ @
Command Target Value
open
assertTitle Sign in - Google Accounts
| |type id=Email InvalidEmaillD
»
Command type v
Target id=Email | Select | | Find
Volve Invalicemail)] |

Step 18 — Now select the fourth empty test step in the Editor Pane
Step 19 — Type “type” command within the command text box.

Step 20 — Now switch to the web browser, bring the mouse cursor to the “Password” textbox within the login

form and press a right click.

58

Choose “Inspect Element with Firebug”option.

FassSwora

V] Stay signed in Need help?

Console | HTML v | (5SS Saipt DOM Net Cookies

d < form#gaia_loginform < div.card < div.main < divwrapper < body < html

:ol?:z: rgb (266, 286, 288);">

bel class="hidden-label for="Samawd s ord
<input id="Passwd"” class="" cype="pamsvord” placebolder="Password™ naze="Passwd">
<input 1d® signin' ClLASS™ IC-DULLON IC~DULLON~SUDMIL' CLYyPe™ SUDMit" VALAUG™ S1ghD in' name'

i <label class="remezber">

<inpus Ty3 : < 2
<a ide“link~forgot~passwd” class*"need-help~reverse” hrefe“https://accounts. google. com/R

Step 21 — The HTML code below manifests the distinct property attributes belonging to the “Password” text
box. Notice that there are four properties (ID, type, placeholder and name) that uniquely identify the web
element on the web page. Thus it’s up to the user to choose one or more than one property to identify the web
element.

Thus, in this case, we choose ID as the locator. Copy the ID value and paste it in the Target field of the third test

step prefixed with “id=".

file Edit Actions OQptions Help
Base URL https//accounts.google.com/

SE—= BB p= |e

| Command Target Value
open
assertTitle Sign in - Google Accounts
Pl |type id=Email InvaligEmaillD
Sann [5ee a=Pand 1

Copy and pasted the ID attribute
in the Target Column ¥} Stay signed in Need helg

Create an account Command type
Mrorget id=Passwd [select | [Fim

Value

fsole | HTMLP | CSS Suipt DOM Net Cookies
oginform <« div.card < divmain « divwrapper < body < html

B 255); ">

y ; label | Log | Reference | Ui-Element | Rollup
1d="Passwd” cl type="password” placehclder=*Password” names="Passwd”>
Lgnin class="re-button re-butten-submit® types“subsic™

type(locator, value)

cinpur

Step 22 — Click on the Find button to verify if the locator tabbed finds and locates the designated Ul element on

the web page.
Step 23 — Now, the next step is to enter the test data in the Value textbox of the fourth test step within the

Editor Pane. Enter “InvalidPassword” in the Value textbox. User can alter the test data as and when it is desired.

59

Dle Edit Actions Qptions. Help
Base URL i;ti;;//accounts.googie.com/ -
Table [Source
Command Target Value
open
assertTitle Sign in - Google Accounts
"l [type id=Email InvalidEmaillD
type id=Passwd InvalidPassword |
Command type -
Target id=Passwd | Select || Find |
.i Value InvalidPassword|

Step 24 — Now select the fifth empty test step in the Editor Pane

Step 25 - Type “click” command within the command text box. The “click” command clicks on a specified
web element within the web page.

Step 26 — Now switch to the web browser, bring the mouse cursor to the “Sign in” button within the login form
and press a right click.

Choose “Inspect Element with Firebug”option.

[¥] Stay signed in Neaed help?

Console | HTML » | €SS Script DO Net Cookies

witton « form#gaia_loginform < div.card < div.main < divwrapper < body « htmi

.
color: xgbidfs, 266, 268);">

Jabel classv"hidden~label” for="Paravd">Fasswosd </label

Step 27 — The HTML code below manifests the distinct property attributes belonging to the “Sign in” button.
Choose ID as the locator. Copy the ID value and paste it in the Target field of the third test step prefixed with
“id:”,

60

Sign in

Copy and pasted the ID
attribute in the Target field

FEile gdit Actions Qptions Help
Base URL httpse//accounts.geogle.com/

Tl ea—st pEps | e [

|¥) Stay signed in
h Table | Source
Command Target Value
Create an account open
assentTitle Sagn in - Google Accounts
One Google Account for everything Googl type id=Email InvalidEmaillD
M&tO 2> E type wd=Passwd InvaldPassword
S o -
| 3 wd=signin]
Command click i
- - Taget id=signin Select Find
Console | MTML | | €SS Script DOM Net Cookles
[Value

wtton < form#4gaia_loginform « div.card « div.main « div.wrapper < body < html
coles: rgbiafs, 255, 288):%> > 2

| tog | Retecence | ui-clement | Rollop |
clickflocator) A5

5
® locator - am element Jocator

Step 28 — Click on the Find button to verify if the locator picked finds and locates the designated Ul element on

the web page.

The test script is completed now. Refer the following illustration to view the finished test script.

Conclusion

@ Selenium IDE 250

ekt s Actions = Optionss el
Base URL E@Eé)}accoudts.gwgﬁom/ -
— PR PE 0| @ @
| Table l Source
Command Target Value
open
assertTitle Sign in - Google Accounts
| |type id=Email InvalidEmaillD
type id=Passwd InvalidPassword
| |click id=signln
Command v
Target [Select] [Find]
Value
Log I Reference [Ul-Element I Rollup I
click(locator) I=
Arguments: =
® locator - an element locator
Clicks on a link, button, checkbox or radio button. If the click action causes a new page to
load (like a link usually does), call waitForPageToLoad. e

——
Step 29 — Play back the created test script and Save it in the same way we did in the previous tutorial.

61

In this tutorial, we introduced yet another script creation tool or rather a tool that aids to script creation.

Firebug surprisingly has a great potential to locate web elements on a web page. Thus the user can leverage the

tool’s capabilities in creating effective and efficient automation test scripts manually.

Next Tutorial #5: Moving ahead in the next tutorial, we would have a look at the various types of locators in
Selenium and their accessibility technique to build test scripts. In the meantime reader can start building
his/her automation test scripts using Firebug.

Have you used Firebug for inspecting HTML elements or for creating scripts? Do you find it useful? Please

share your experience in comments

62

http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/

Tutorial #5 — Locator Types: ID, ClassName, Name, Link Text, Xpath

How to Identify Web Elements Using Selenium Xpath and Other Locators —
Selenium Tutorial #5

In the previous tutorial, we introduced you with another automation testing tool named as Firebug. We also
created our own automation script manually using Firebug and its capabilities. We also learned to affix desired
modifications into our script.

Moving ahead, in this tutorial we would have a look at the various types of locators in Selenium and their
accessibility technique to build test scripts. Thus this tutorial is comprised of the detailed introduction to
various types of locators.

This is our 5th tutorial in Selenium Tutorial series.

What is Locator?

Locator can be termed as an address that identifies a web element uniquely within the webpage. Locators are
the HTML properties of a web element which tells the Selenium about the web element it need to perform
action on.

There is a diverse range of web elements. The most common amongst them are:

e Text box

o Button

e Drop Down
e Hyperlink

e Check Box

« Radio Button
Types of Locators

Identifying these elements has always been a very tricky subject and thus it requires an accurate and effective
approach. Thereby, we can assert that more effective the locator, more stable will be the automation script.
Essentially every Selenium command requires locators to find the web elements. Thus, to identify these web
elements accurately and precisely we have different types of locators.

63

http://www.softwaretestinghelp.com/firebug-for-selenium-scripts-selenium-tutorial-4/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Locator Types

1
' I ! '

1D ClassName Name Link Text Xpath CSS Selector

]

Class
Attribute
Sub-string

Inner text
Types of Locators in Selenium

Now let’s understand further by exercising each of them independently.
Before we start with the locators, let me take a moment to introduce the application under test. We would be

using “https://accounts.google.com/” for locating different types of web elements using different locator types.

Using ID as a Locator
The best and the most popular method to identify web element is to use ID. The ID of an each element is
alleged to be unique.

Web Element ID

In this sample, we would access “Email” text box present in the login form at gmail.com.

Finding an ID of a web element using Firebug

Step 1: Launch the web browser (Firefox) and navigate to “https://accounts.google.com/”.
Step 2: Open firebug (either by pressing F12 or via tools).
Step 3: Click on the inspect icon to identify the web element.

Wweb Element Em:
to identify

Click on inspect icon
before clicking on the

web element

) Stay signed in

#W < 0| = - Console HIML> (SS Script DOM Net Cookies
k5 | ;VC'I;tkmdm«anhepcq’ﬁompredk\

= <htal lang=“en™>
* <head>

Moo

</htal>

64

Step 4: Hover on the web element (Email textbox in our case) on which we desire to perform some action. In
the firebug section, one can see the corresponding html tags being highlighted.

Pacswnt
155 WL

[V] Stay signed in Need help?

Console HIML~ (SS Script DOM Net Cookies
| < form#gaia_loginform < div.card < div.main < divwrapper < body < html

sabel jden~Labe foz "--.., abel
Step 5: Be cognizant about the ID attribute and take a note of it. Now we need to verify if the ID indentified is
able to find the element uniquely and flawlessly.

Syntax: id = id of the element

In our case, the id is “Email”.
Alternative approach:

Instead of following step 2 to 4, we can directly locate / inspect the web element by right clicking on the web
element (Email Textbox) whose locator value we need to inspect and clicking on the option “Inspect Element
with Firebug”. Thus, this click event triggers the expansion of firebug section and the corresponding html tag
would be highlighted.

65

Undo

Cut
Hasswi

Copy

Paste

- Delete

7] Stay s Select All
Add a Keyword for this Search...
Inspect Element (Q)

W Inspect Element with Firebug I]
open /Servicelogin?passive=1209600&continue= https %3AN2F %2Faccounts.googl...
verifyValue id=Email
verifyText id=Email

Show All Available Commands ¥
[e e

One Good

Verify the locator value
Assuming that the browser is open and is re-directed to “https://accounts.google.com/”.

Step 1: Launch Selenium IDE.

Step 2: Click on the first row in the editor section.

Step 3: Type “id=Email” i.e. the locator value in the target box.

Step 4: Click on the Find Button. If the provided locator value is legitimate then the Email textbox will be
highlighted with yellow color with a florescent green border around the field. If the locator value provided is
incorrect, an error message would be printed in the log pane at the bottom of Selenium IDE.

Case 1 — Locator Value = Correct

Locator Value = Correct

Locator Type = 1D

1 Command
Emall P | Teget id=Email
Runs: 0 Value
Failures: 0
rassword : z

[log] Reference | Ul-Element | Rollup | File|

Case 2 — Locator Value = Incorrect

66

Command -

I | | Terget id=Emai Find
Runs: 0 Value I
Failures: 0 ‘ Incorrect Locator Value

Log | Referencel Ul-Elementl Rollup | Filp Logging (Info)+ Info- Clear

[error] locator not found: id=Emai

Step 5: In order to verify further, user can also execute “type” command against the given target by providing
some value in the “Value” field. If the execution of the command enters the specified value in the Email text

box that means the identified locator type is correct and accessible.
Using ClassName as a Locator

There is only a subtle difference between using ID as a locator and using classname as a locator.

In this sample, we would access “Need Help?” hyperlink present at the bottom of the login form at gmail.com.

Finding a classname of a web element using Firebug

Step 1: Locate / inspect the web element (“Need help?” link in our case) by right clicking on the web element
whose locator value we need to inspect and clicking on the option “Inspect Element with Firebug”.

Step 2: Be cognizant about the classname attribute and take a note of it. Now we need to verify if the classname
indentified is able to find the element uniquely and accurately.

4+ <label class="remember">

canput Pes 12aden Alue -

<a id="link-forgot-passwd"” class='lneed-help-reversell href="https://account
continue=httpi3AN2Fi2fmail .google.comcimairlscs"> hNeed help?
</form>

Syntax: class = classname of the element

In our case, the classname is “need-help-reverse”

Verify the locator value

Step 1: Type “class= need-help-reverse” in the target box in the Selenium IDE.
Step 2: Click on the Find Button. Notice that the hyperlink will be highlighted with yellow color with a
florescent green border around the field.

67

Command >

class=need-help-reverse I l Find

Locator Type =class

Runs: 0

Failures: 0

Log | Reference | Ul-Element | Rollup | File Logging (Info)- Info- Clear

V] Stay signed in

Using name as a Locator
Locating a web element using name is very much analogous to previous two locator types. The only difference
lies in the syntax.

In this sample, we would access “Password” text box present in the login form at gmail.com.

Syntax: name = name of the element

In our case, the name is “Passwd”.

Verify the locator value
Step 1: Type “name= Passwd” in the target box and click on the Find Button. Notice that the “Password”

textbox would be highlighted.
Using Link Text as a Locator

All the hyperlinks on a web page can be indentified using Link Text. The links on a web page can be
determined with the help of anchor tag (<a>). The anchor tag is used to create the hyperlinks on a web page and
the text between opening and closing of anchor tags constitutes the link text (<a>Some Text).

In this sample, we would access “Create an account” link present at the bottom of the login form at gmail.com.

Finding a link text of a web element using Firebug

Step 1: Locate / inspect the web element (“Create an account” link in our case) by right clicking on the web
element whose locator value we need to inspect and clicking on the option “Inspect Element with Firebug”.
Step 2: Be cognizant about the text present within the <a> tags and take a note of it. Hence this text will be
used to identify the link on a web page uniquely.

68

[¥] Stay signed in Nead help?

Create an account

One Google Account)r everything Google
M & .

2| = || console | HTML > | CSS Saipt DOM_ Net Cookies
a¥link-signup < p.create-account < div.one-google < div.main < divwrapper < body < html

® <div class="google-header-bar centered™>

= <div class="ma content clearfix™>
& <div class=“banner*>
* <div class="card signin-cazd cleaszfix">

= <div classe"cne-google™>

reate-account*d>
<a id=*link-sionuo™ href=“huitpa://accounts.google.com/Signlpisezvicesmallicontinueshrtps

Create an scoount </&>

</p>
<p class="tagline™> One Coogle Account for everything Coogle </p>
<ing width="210" heights™17" alt=®" groe®//ssl gstatic.com/accounts/ui/lego_scrip 2x.png™>

</div>

Syntax: link = link text of the element

In our case, the link text is “Create an account”.
b

Verify the locator value
Step 1: Type “link=Create an account” i.e. the locator value in the target box in Selenium IDE.

Step 2: Click on the Find Button. Notice that the link would be highlighted with yellow color with a florescent

green border around the field.

Em

icl

Pacewnts
PassSWQbeator Type = Link Text

link=Create an account

Value

1R LT

[¥] Stay signed in ! [log | Rderencel Ul-Elemem] Rollup

Create an account

Using Xpath as a Locator
Xpath is used to locate a web element based on its XML path. XML stands for Extensible Markup Language

and is used to store, organize and transport arbitrary data. It stores data in a key-value pair which is very much
similar to HTML tags. Both being mark up languages and since they fall under the same umbrella, xpath can be

used to locate HTML elements.

The fundamental behind locating elements using Xpath is the traversing between various elements across the

entire page and thus enabling a user to find an element with the reference of another element.
69

Xpath can be created in two ways:
Relative Xpath

Relative Xpath begins from the current location and is prefixed with a “//”.

For example: //span[(@class="Email’]

Absolute Xpath
Absolute Xpath begins with a root path and is prefixed with a ““/”.

For example: /html/body/div/div][@id="Email’]

Key Points:

e The success rate of finding an element using Xpath is too high. Along with the previous statement,
Xpath can find relatively all the elements within a web page. Thus, Xpaths can be used to locate
elements having no id, class or name.

o Creating a valid Xpath is a tricky and complex process. There are plug-ins available to generate Xpath
but most of the times, the generated Xpaths fails to identify the web element correctly.

e While creating xpath, user should be aware of the various nomenclatures and protocols.

Selenium Xpath Examples

Xpath Checker

Creating Xpath becomes a little simpler by using Xpath Checker. Xpath Checker is a firefox add-on to
automatically generate Xpath for a web element. The add-on can be downloaded and installed like any other
plug-in. The plug-in can be downloaded from “https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/”.

As soon as the plug-in is installed, it can be seen in the context menu by right clicking any element whose xpath
we want to generate.

Element for which G) o l o
we want to ((4 Y| Image
generate Xpath
Copy Image
O n e a C C O U n t / Copy Image Location
' Saye Image As...

Email Image...
Set As Desktop Background...
View Image Info

Sign in to contin

"View Xpath” can be ||

: i 1 View XPath

seen once the Xpath

Checker is successfully Inspect Element (Q)
installed Launch Selenium Builder

“i&’ Inspect Element with Firebug

70

Click on the “View Xpath” to see the Xpath expression of the element. An editor window would appear with
the generated Xpath expression. Now user has the liberty to edit and modify the generated Xpath expression.
The corresponding results would be updated cumulatively.

| GOORIC |

One account. All of Google.

Sign in to continue to Gmail

~
@ XPath Checker be2d
XPath: /chtmlxbody/xxdiv/xdnvil)cdv/ximg ; Generated Xpath Expression
Namespaces

http://www.w3.0rg/1999/xhtml x

‘ Results from hitps://accounts.google.com/Servicel ogin?service= mail&icontinue= https://mail. google.com/mail/
| One match found

1 GO Sler Web element matching the

Xpath Expression

Note that the Xpath Checker is available for other browsers as well.

But re-iterating the fact, that most of the times, the generated Xpaths fails to identify the web element rightly.

Thus, it is recommended to create our own Xpath following the pre defined rules and protocols.
In this sample, we would access “Google” image present at the top of the login form at gmail.com.

Creating a Xpath of a web element
Step 1: Type “//img[@class="logo’]” i.e. the locator value in the target box within the Selenium IDE.

Syntax: Xpath of the element
Step 2: Click on the Find Button. Notice that the image would be highlighted with yellow color with a
florescent green border around the field.

SEs pEpE |0
Go gle ot [souea]
'| | Command Target
account. All of @ Yl Qs oo
2 : : .Command
S o e 0 M zge[Trmglacim=togel
Value

71

Conclusion
Here are the cruxes of this article.

o Locators are the HTML properties of a web element which tells the Selenium about the web element on
which it needs to perform actions.
o There is a wide range of web elements that a user may have to interact with on a regular basis. Some of
them are: Text box, Button, Drop Down, Hyperlink, Check Box, and Radio Button.
« With the varied range of web elements comes a vast province of strategies/approaches to locate these
web elements.
o Some of the extensively used locator types are: 1D, ClassName, Link Text, Xpath, CSS Selectors and
Name.
Note: Owing to the fact that creating CSS Selector and Xpath requires a lot of efforts and practice, thus the
process is only exercised by more sophisticated and trained users.

In this tutorial we learned different types of locators including Selenium Xpath.
Next Tutorial #6: In continuation with this Selenium Locator types tutorial we will learn how to use CSS

Selector as a Locator.
Any queries? Let us know in comments. We will try to resolve all.

72

http://www.softwaretestinghelp.com/css-selector-selenium-locator-selenium-tutorial-6/

Tutorial #6 — Locator Types: CSS Selector

How to Use CSS Selector for Identifying Web Elements for Selenium Scripts
— Selenium Tutorial #6

In our previous Selenium tutorialwe learned different types of locators. We also learned how to use: ID,
ClassName, Name, Link Text, and Xpath locators for identifying web elements in a web page.

In continuation with that, today we will learn how to use CSS Selector as a Locator. This is our 6th tutorial in
our free Selenium Training series.

Using CSS Selector as a Locator:
CSS Selector is combination of an element selector and a selector value which identifies the web element within
a web page. The composite of element selector and selector value is known as Selector Pattern.

Selector Pattern is constructed using HTML tags, attributes and their values. The central theme behind the
procedure to create CSS Selector and Xpath are very much similar underlying the only difference in their
construction protocol.

Like Xpath, CSS selector can also locate web elements having no ID, class or Name.

So now gearing ahead, let us discuss the primitive types of CSS Selectors:

CSS Selector

T T T T 1

D J Class | Attribute] 1D/Class & Attrdate I Sub -string | Inner text }

CSS Selector: ID

In this sample, we would access “Email” text box present in the login form at Gmail.com.

The Email textbox has an ID attribute whose value is defined as “Email”. Thus ID attribute and its value can be
used to create CSS Selector to access the email textbox.

Creating CSS Selector for web element

Step 1: Locate / inspect the web element (“Email” textbox in our case) and notice that the html tag is “input”
and value of ID attribute is “Email” and both of them collectively make a reference to the “Email Text box”.
Hence the above data would be used to create CSS Selector.

73

http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Console HTML > CSS Saipt DOM Net Cookles

« form#gaia_loginform « div.card « div.main « div.wrapper < body < html

<input id="Email™ »lass="" type=Temail” spelicheck="false"” value="" placeholder~"Email"”

Verify the locator value
Step 1: Type “css=input#Email” i.e. the locator value in the target box in the Selenium IDE and click on the
Find button. Notice that the Email Text box would be highlighted.

Command

Forget=—1 css=inputEmail
Value

1 :

| Log | Reference | Ul-Element | Rollup

Locator Type = CSS Selector

Syntax
css=<HTML tag><#><Value of ID attribute>

e HTML tag - It is tag which is used to denote the web element which we want to access.

o #—The hash sign is used to symbolize ID attribute. It is mandatory to use hash sign if ID attribute is
being used to create CSS Selector.

e Value of ID attribute — It is the value of an ID attribute which is being accessed.

e The value of ID is always preceded by a hash sign.

Note: Also applicable for other types of CSS Selectors

o While specifying CSS Selector in the target text box of Selenium IDE, always remember to prefix it
with “css=".

e The sequence of the above artifacts is inalterable.

o If two or more web elements have the same HTML tag and attribute value, the first element marked in

the page source will be identified.
CSS Selector: Class

In this sample, we would access “Stay signed in” check box present below the login form at gmail.com.

74

The “Stay signed in” check box has a Class attribute whose value is defined as “remember”. Thus Class

attribute and its value can be used to create CSS Selector to access the designated web element.

Locating an element using Class as a CSS Selector is very much similar to using 1D, the lone difference lies in
their syntax formation.

Creating CSS Selector for web element

Step 1: Locate / inspect the web element (“Stay signed in” check box in our case) and notice that the html tag is
“label” and value of ID attribute is “remember” and both of them collectively make a reference to the “Stay
signed in check box™.

Verify the locator value

Step 1: Type “css=label.remember” i.e. the locator value in the target box in the Selenium IDE and click on the
Find Button. Notice that the “Stay signed in” check box would be highlighted.

Command

Locator Type = CSS Selector

viStay signed in Need help

S { ss=label.remember l Select

Value

| Log | Reference | Ui-Element | Roliup
Syntax
css=<HTML tag><.><Value of Class attribute>

e . —The dot sign is used to symbolize Class attribute. It is mandatory to use dot sign if Class attribute is
being used to create CSS Selector.

o The value of Class is always preceded by a dot sign.
CSS Selector: Attribute

In this sample, we would access “Sign in” button present below the login form at gmail.com.

The “Sign in” button has a type attribute whose value is defined as “submit”. Thus type attribute and its value
can be used to create CSS Selector to access the designated web element.

Creating CSS Selector for web element

Step 1: Locate / inspect the web element (“Sign in” button in our case) and notice that the html tag is “input”,
attribute is type and value of type attribute is “submit” and all of them together make a reference to the “Sign
in” button.

Verify the locator value

75

Step 1: Type “css=input[type="submit’]” i.e. the locator value in the target box in the Selenium IDE and click
on the Find Button. Notice that the “Sign in” button would be highlighted.

Command

Target css=input{type="submit’}

Value

S {
I“ = 2

[Log | Reference | Ul-Element | Roliup

vl Stay signed in Need help? §
Syntax
css=<HTML tag><[attribute=Value of attribute]>

o Attribute — It is the attribute we want to use to create CSS Selector. It can value, type, name etc. It is
recommended to choose an attribute whose value uniquely identifies the web element.

o Value of attribute — It is the value of an attribute which is being accessed.
CSS Selector: ID/Class and attribute

In this sample, we would access “Password” text box present in the login form at gmail.com.

The “Password” text box has an ID attribute whose value is defined as “Passwd”, type attribute whose value is
defined as “password”. Thus ID attribute, type attribute and their values can be used to create CSS Selector to
access the designated web element.

Creating CSS Selector for web element

Step 1: Locate / inspect the web element (“Password” text box in our case) and notice that the html tag is
“input”, attributes are ID and type and their corresponding values are "Passwd” and “password” and all of them
together make a reference to the “Password” textbox.

Verify the locator value

Step 1: Type “css=input#Passwd[name="Passwd’]” i.e. the locator value in the target box in the Selenium IDE
and click on the Find Button. Notice that the “Password” text box would be highlighted.

Command

Target [css:mpmlPumd[ncmt: Passwd’) I Sedect

Value

Ilq.M«mc]W-WIW

Sign in

Syntax
css=<HTML tag><. Or #><value of Class or ID attribute><[attribute=Value of attribute]>

Two or more attributes can also be furnished in the syntax. For
example, “css=input#Passwd[type="password’] [name="Passwd’] ".

76

CSS Selector: Sub-string

CSS in Selenium allows matching a partial string and thus deriving a very interesting feature to create CSS
Selectors using sub strings. There are three ways in which CSS Selectors can be created based on mechanism
used to match the sub string.

Types of mechanisms
All the underneath mechanisms have symbolic significance.

o Match a prefix

e Match a suffix

e Match a sub string
Let us discuss them in detail.

Match a prefix
It is used to correspond to the string with the help of a matching prefix.

Syntax
css=<HTML tag><[attribute"=prefix of the string]>
e~ —Symbolic notation to match a string using prefix.
o Prefix — It is the string based on which match operation is performed. The likely string is expected to
start with the specified string.
For Example: Let us consider “Password textbox”, so the corresponding CSS Selector would be:
css=input#tPasswd[name”™="Pass’|
Match a suffix
It is used to correspond to the string with the help of a matching suffix.

Syntax
css=<HTML tag><[attribute$=suffix of the string]>
e #— Symbolic notation to match a string using suffix.
o Suffix — It is the string based on which match operation is performed. The likely string is expected to
ends with the specified string.
For Example: Lets again consider “Password textbox”, so the corresponding CSS Selector would be:
css=input#Passwd[name$="wd ']
Match a sub string
It is used to correspond to the string with the help of a matching sub string.

Syntax

77

css=<HTML tag><[attribute*=sub string]>
e *—Symbolic notation to match a string using sub string.
e Sub string — It is the string based on which match operation is performed. The likely string is expected
to have the specified string pattern.
For Example: Lets again consider “Password textbox”, so the corresponding CSS Selector would be:

css=input#tPasswd[name$="wd’]
CSS Selector: Inner text

Inner text helps us identify and create CSS Selector using a string pattern that the HTML Tag manifests on the
web page.

Consider, “Need help?” hyperlink present below the login form at gmail.com.

The anchor tag representing the hyperlink has a text enclosed within. Thus this text can be used to create CSS
Selector to access the designated web element.

Syntax
css=<HTML tag><:><contains><(text)>

e :—Thedot sign is used to symbolize contains method
o Contains — It is the value of a Class attribute which is being accessed.
o Text— The text that is displayed anywhere on the web page irrespective of its location.
This is one of the most frequently used strategies to locate web element because of its simplified syntax.

Owing to the fact that creating CSS Selector and Xpath requires a lot of efforts and practice, thus the process is
only exercised by more sophisticated and trained users.

Next Tutorial #7: Proceeding ahead with our next tutorial, we would take the opportunity to introduce you with
an extension of locating strategies. Thus, in the next tutorial, we would study the mechanism to locate web

elements on Google Chrome and Internet Explorer.
We are covering Selenium Locators in more details as it is important part of Selenium Script creation.

78

http://www.softwaretestinghelp.com/locate-elements-in-chrome-ie-selenium-tutorial-7/

Tutorial #7 — Locating elements in Google Chrome and IE

How to Locate Elements in Chrome and IE Browsers for Building Selenium
Scripts — Selenium Tutorial #7

This is tutorial #7 in our Selenium Online Training Series. If you want to check all Selenium tutorials in this
series please check this page.

In the previous tutorial, we tried to shed light on various types of locators in Selenium and their locating
mechanisms to build test scripts. The tutorial was primary consist of the brief introduction of different locator
types like ID, Classes, Xpaths, Link texts, CSS Selectors etc. and their identification.

Proceeding ahead with our next tutorial, we would take the opportunity to introduce you with an extension of
locating strategies. Thus, in the next tutorial, we would study the mechanism to locate web elements on
Google Chrome and Internet Explorer.

As we all are well aware of the fact that there is rapid growth in the internet user base, thus stakeholders and
programmers are building web applications which are likely to work on most of the browsers. Thus, imagine a
situation where your web application doesn’t support Firefox but works well for Chrome and Internet Explorer.
Now how are you going to automate such an application using Selenium? Or to be specific how are you going
to locate web elements in Chrome and Internet Explorer. Thus the answer lies ahead in this tutorial.

Locating Web Elements in Google Chrome
Let us begin with understanding the locating strategies in Google Chrome.

Like firebug in Firefox, Google Chrome has its own developer tool that can be used to identify and locate web
elements on the web page. Unlike firebug, user is not required to download or install any separate plugin; the
developer tool comes readily bundled with Google Chrome.

Follow the below steps to locate web elements using Chrome’s Developer tool:
Step #1: The primary step is to launch the Google Chrome’s Developer tool. Press F12 to launch the tool. The
user would be able to see something like the below screen.

79

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/
http://www.softwaretestinghelp.com/css-selector-selenium-locator-selenium-tutorial-6/
https://developer.chrome.com/devtools

&

Qﬂwmwutmvwmnuww 0:)
Stflet | Computed Event Listemers *

element.style {
backgrowndi» [rgod 285, 255, 238

Y antal meni

te"/_sinrone/sewtad/manifestiespuedilesUTF 4" Llange"en-IN") q
 (Reddr ¢ 1
|

2>
styles"tackgroundl rgd(25%, 259, 258).™»
a*3¢/8ivy

|
!

¥ (vody Class A
wiv 4 &)
| body { texiadiesoye,
| @ font:esmall arlal,sans-serif;
v =ArEini e ;
e | @ min-neigne: 6déex;
s ratv : ¥ text-align: webkit-center,
")

wier ageat
</akv> alsplay: dlock;
CTeriaces Aamee Csl™ Lae 0™ atylee™aislaviaone ™)/ textared) —rrrne® fows |

Take a note that “Element” tab is highlighted in the above screenshot. Thus, element tab is the one which
displays all the HTML properties belonging to the current web page. Navigate to the “Element” tab if it is not
opened by default on the launch.

You can also launch developer tool by right clicking anywhere within the web page and by selecting “Inspect

element” which is very similar to that of firebug’s inspection.

Step #2: The next step is to locate the desired object within the web page. One way to do the same is to right
click on the desired web element and inspect. The HTML property belonging to that web element would be
highlighted in the developer tool. Another way is to hover through the HTML properties and the matching web
element would be highlighted. Thus, in this way user can locate ids, class, links etc.

~maAa ‘

“|1abel.hidden-label @px = Opx|
rrroTor ~

lements| Network Sources Timeline Profiles Resources Audits Console

<input typee"hidden™ ide"_utf8" namee"_utf8"” values"4">

<input type="hidden™ name="Dgresponse™ ids="bgresponse"™ value="js_disabled™>

<input typee"hidden"™ ide"pstMsg™ name="pstMsg" value="1">

<input types“hidden™ ide“dnConn™ names"dnConn™ value>

<input type="hidden" id="checkConnection" names="checkConnection" values=

“youtube:9685:1%>

<input type="hidden™ i{d="checkedDomains" name="checkedDomains”™ value="youtube™> |
- a.l & & L - TLRFFAFTLYSEN

<input id="Email” name="Email" type="esmail™ placeholder="Email™ value
spellcheck="false™ class>

130 1857 o0 S 3 SO
<input id="Passwd™ names"Passwd™ types"password” placeholder«"Password” class>
<input ide"signIn” name«"signIn™ classe"rc-button rc-button-submit™ types
“submit™ values“Sign in">
P <label classe="remember">.</label>
<input type="hidden" name="rmShown" value="1">
<a ig="link-forgot-passwd” href="https://accounts.google.com/RecoverAccount?

Creating an Xpath in Developer Tool

80

We have already discussed about Xpaths in the last tutorial. We also discussed about its creation strategy. Here

we would base our discussion to check the validity of the created Xpath in Chrome’s Developer tool.

Step #1: For creating Xpath in Developer tool, open the console tab.
Step #2: Type the created Xpath and enclose it in $x(*“//input[@id="Email’]”)

Q [] Elements Network Sources Timeline Profiles Resources Audits | Console
© V¥ <topframe> v

> [x("//input[@id="Email’ ")

Step #3: Press the enter key to see all the matching HTML elements with the specified Xpath. In our case, there
is only one matching HTML element. Hover on that HTML element and the corresponding web element would
be highlighted on the web page.

inputatmail 274px »~ &4px

Ema

0 Glements Network Sources Timeline Profdes Resources Audits | Console |

Y <top frame> v
$x("//input[@ic="Email"]")
[d"‘pu' 10+"Enail”™ names"Emall™ types“emall® placeholcer="Email™ value spellchecks="false" -:’.a;:)jl

In this way, all the Xpaths can be created and checked for their validity within the console.

Information related to CSS corresponding to the web element can be found within the Chrome’s Developer tool.
Refer the screenshot below:

Q D |Bements| Network Sources Temebne Profles Resources Acdes Conscle = ouE SO
Syet Fomputed Evert Laterens
v “» ~ 1
» ol .v' + N
v - !
» sitlon: adsolwt e wie body ML
hel v over?] Laden;
P oglv stylee"font-size 19 colornite; 2 -Incex -§poel L ¢ ¢ o oere gaen! b 1)
»
a
»
png L L
‘ U
» My ¢
LS i s -:' T pe"i1leinztegte . si/madl-static D s et e e
{a/uegmail salz en 22nln 2 .&..L_r_éuuﬁ.l.i.:z._,_kgu Soehgrovieosiine=_aitty
» 1 4a" o]

‘_‘.u.:m‘..:un*.. taslrdens™s1 titles

Locating Web Elements in Internet Explorer

Like Google Chrome, Internet Explorer also has its own Developer Toolthat can be used to identify web
elements based on their properties within the web page. User is not required to download or install any separate
plugin, the developer tool comes readily bundled with Internet Explorer.

Follow the below steps to locate web elements using IE Developer tool:

81

http://www.microsoft.com/en-us/download/details.aspx?id=18359

Step #1: The primary step is to launch the IE Developer tool. Press F12 to launch the tool. The user would be

able to see something like the below screen.
File Find Disable View Outline Images Cache Tools Validate | Browser Mode: [E8 Document Mode: IES Standards
@ CSS Scrpt Profiler Search HTML
RRHY OHE [Sye TraceSyles Loyout Arbutes

L tal .

IQ <html lang="en-IN" itemtypes"http://schema.org/WebPage” itee]

Take a note that “HTML” tab is highlighted in the above screenshot. Thus, HTML tab is the one which displays
all the HTML properties belonging to the current web page. Expand the HTML tab to view the properties of all
the web elements belonging to the current web page.

Step #2: The next step is to locate the desired object within the web page. One way to this is to select the
HTML element and the matching web element would be highlighted. Thus, in this way user can locate ids,
class, links etc. Check out in the below screenshot in which Email Textbox would be highlighted as soon as we
select the corresponding HTML property.

@ Gmail - Developer Tools
File Find Disable View Outhne Images Cache Tools Validate

envicelogenZsenvice= mailliicontinues= https//mas

HTML CSS Script Profiler
leb Slice Gallery v [3}] Try AOL for Broadband BRE% & =

zlass=“card signin-card clearfix™>
v ide"cc_iframe_parent”>
g classe"profile-img” alte™" srce”//ssl.gstatic.com/acc
= t - Empty Text Node
(’() SIC class="profile-name™/>

e ide"gaia_loginform™ actione="https://accounts.google.s
<input names“"GALX" types“"hidden™ value="EES8EuEyj6XM"/>
Text - Empty Text Noge
One account. A” O <input name="continue™ type«“hidden™ value="https://mail
Text - Empty Text Node

<input name="service” types"hidden” values="mail™/>

Signintocontinueto Gl o e . fmpty Text Node
<input names®_ut#8" ide"_utf8" types"hidden" values"¢§"/
Text - Empty Text Node

<input names“bgresponse™ ids"bgresponse™ type="hidden™
Text - Empty Text Node

<input names"pstMsg® id="pstMsg® type=“hidden” value="1"
Text - Empty Text Node

<input names"dnConn* ide"dnConn™ types“hidden"/>

Text - Empty Text Noce

<input names“checkConnection™ ide“"checkConnection™ types
Text Empty Text Node

<input names“checkedDomains™ ide“checkedDomains™ types"r

Text - Empty Text Noce

Password <label classe="stacked-label"™ fore"Email">

l

Another way to locate the web element is to click on the “Find” button present in the top menu and by clicking
on the desired web element within the web page. As a result, the corresponding HTML properties would be
highlighted.

Emal

<input eoai) [llsss="" id="Enail” type="ema{l® 54

82

fw-.l, G -«;aﬂ'-'_:‘. P AR P '7-:.“'5"{‘?“:;\'-" 2
File} Find| Disable View Outline Images Cache Tt

'HTML| CSS Script Profiler

NECEEEE

lass="card signin-card clearfix">

v id="cc_iframe_parent">

g class="profile-img" alt="" src="//ssl.gst:
t - Empty Text Node

class="profile-name"/>

rm id="gaia_loginform" action="https://accol
tinput name="GALX" type="hidden" value="EES8E
Fext - Fmntv Text Node

Thus, by using the developer tool, user can find ids, classes, tag names and can create Xpaths to locate web

elements.

Like Chrome’s Developer tool, IE developer tool has a separate section that displays CSS related information.

Checkout the below screenshot.

@ Gemad - Developer Tooks

File Find Dwable View Outhne Images Cache Tools Valdate | Beowser Mode 2 D Mode: X8 Standard

[HTML| €SS Script Profider [searcn MM
hREYEHT [] e ottt
tlasse"card signin-cord clearfix*> - =F = nuel

v loe"cc_1iframe_parent™> AL

g classe"profile-img” alte"" sroe”//ssl.gstatic.con/accounts/ul/a J fontebaniiy—idilal SBnbasaibd
¢ fopty Text Node Vo direitlone it

¢le “profile-name*/> B s = |

we loe"gaia_loginfore™ actione"nttps://accounts.google.con/Service il e ipa

<input names"0ALX" typee"hicden® values“"EL86nly S6XN"/> VNI

Text fmpty Text Node R s)

<input namee"continue™ types"nidden™ valuee"Nttps://mail.google.ct 7 inberited - pody

fext fopty Text Node v oY

<input names"service® type="nidden” values"sail®/> vifont-family : Arfsl, sens-serif
Text Empty Text Node B e e

<input names®_utfB® {de*_utf8® typee"hidden™ value«"*/> i e 3OS

Text Espty Text Node B R R e S T

<input names"bDgresponse” ide"bgresponse”™ types"hidden”™ values"is ¢ v BO0Y

Text Empty Text Node Jtunletii e ihpa

<input namee"pstMsg® lde"pitMsg® typee"hidden” valuee"1"/> Y DNPUT[typesenail)

fext Empty Text Node . baing P

Cinput nases"dnlonn® (de"dnlonn® type="nidden*/> 3 Yiborder-botton : 8093999 1px soliae
Text - Empty Text Node ‘ Viborder-left 1 8499989 Ipx solid
<input namee~checkConnection™ i{de~checuConnection™ types~nicoen~ Ypasding-bottom 1 Opx

Text « Empty Text Node Aine-belght L 360x

Conclusion

In this tutorial, we shed light on the basic element locating strategies using Developer’s tool for Google Chrome

and Internet Explorer.

Next Tutorial #8: Proceeding ahead with our next tutorial, we would take the pleasure to introduce you with a
more advanced tool named as WebDriver. WebDriver is one of the most compelling automation testing tools.
So our next tutorial onwards, we would route and base our discussions around WebDriver and all its nitty gritty.

83

http://www.softwaretestinghelp.com/selenium-webdriver-selenium-tutorial-8/

Selenium WebDriver:

Selenium WebDriver

Tutorial #8 — Selenium WebDriver Introduction (Must Read)
Tutorial #9 — Selenium WebDriver Installation with eclipse
Tutorial #10 — My first Selenium WebDriver script (Must Read)
Tutorial #11 — Introduction to JUnit

Tutorial #12 — Introduction to TestNG (Must Read)

Tutorial #13 — Handling Drop-downs

Tutorial #14 — Looping and Conditional commands

Tutorial #15 — Explicit and Implicit Waits

Tutorial #16 — Handling Alerts/popups

Tutorial #17 — Commonly used commands

Tutorial #18 — Handling Web Tables, Frames, Dynamic Elements
Tutorial #19 — Exception Handling

84

Tutorial #8 — Selenium WebDriver Introduction (Must Read)

Introduction to Selenium WebDriver — Selenium Tutorial #8

Introduction to Selenium WebDriver:
Earlier in this series we published tutorials which focused more on Selenium IDE and its various aspects. We

introduced the tool and discussed about its features. We also constructed a few scripts using Selenium
IDE and Firebug. From there we moved on to different types of web elements available and their locating

strategies.
Now that we are well versed with Selenium IDE, let us move our learning curve towards creating more

advanced automation scripts using Selenium WebDriver. WebDriver is one of the most compelling
automation testing tools. Let us discuss it in detail.

Introduction

WebDriver is one of the most powerful and popular tools of Selenium toolkit. WebDriver comes as an extended
version to Selenium RC with superfluous advantages and addresses many of its limitations. WebDriver extends
its support to many latest browsers and platforms unlike Selenium IDE. WebDriver also doesn’t require
Selenium server to be started prior to execution of the test scripts unlike Selenium RC.

Selenium RC in aggregation with WebDriver API is known as Selenium 2.0. Selenium was so developed in
order to support dynamic web pages and Ajax calls. It also supports various drivers to exercise web based
mobile testing.

Architecture

WebDriver is a web-based testing tool with a subtle difference with Selenium RC. Since, the tool was built on
the fundamental where an isolated client was created for each of the web browser; no JavaScript Heavy lifting
was required as we discussed in our very first tutorial.

WebDriver makes direct calls to the Web browser and the entire test script is executed in this fashion.
WebDriver uses the browsers support and capabilities to automation.

85

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/selenium-ide-download-and-installation-selenium-tutorial-2/
http://www.softwaretestinghelp.com/selenium-ide-script-selenium-tutorial-3/
http://www.softwaretestinghelp.com/selenium-ide-script-selenium-tutorial-3/
http://www.softwaretestinghelp.com/firebug-for-selenium-scripts-selenium-tutorial-4/
http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/
http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/
http://docs.seleniumhq.org/projects/webdriver/

& ba:kage' 't-e-st.Log.in;
import static org.junit.Assert.*;] Go ¢

public class Login_TC 01 {
One account. /
public void setUp() throws Exception { Sign in to contin
Bifter +“—>
public void tearDown() throws Exception {
}
BTest
public void test() {

foil("Not yet implemented®);
| B

Unlike Selenium RC, Selenium WebDriver doesn’t essentially require Selenium Server to be started before
launching the test script execution. User can leverage the benefit and may or may not require Selenium Server if
he/she desires to perform the test execution on the same machine where the browser is residing.

Exceptional Cases when Selenium Server is required with WebDriver:

e When the user wish to execute test scripts on the remote machine.

e When the user wish to execute test scripts on HtmlUnit Driver.

e When the user wish to execute test scripts on multiple platforms.
WebDriver is a purely object oriented framework that works on OS layer. It utilizes the browser’s native
compatibility to automation without using any peripheral entity. With the increasing demand it has gained a
large popularity, user base and has become by far one of the most extensively used open source automation

testing tool.
Features of Selenium WebDriver

Browser Compatibility

Mozilla Firefox

Google Chrome

[/f’ —
‘l' Internet AndroidDriver/
Explorer / IphoneDriver
NS—————"
Browser Compatibility - © www. SoftwareTestingHelp.com

WebDriver supports diverse range of web browsers and their versions. It supports all the conventional browsers
in addition to some unique and rare browsers like HtmlUnit browser unlike Selenium RC and Selenium IDE.

86

HtmlUnit Browser executes the test scripts analogous to other browsers except the fact that it runs in the
headless mode i.e. GUI-less mode and the user won’t be able to view the test script execution. Said that the test
script execution transpires in headless mode, thus the execution speed takes a roll and quickens the execution.

WebDriver also supports web based mobile testing. Thus it provides AndroidDriver and IphoneDriver to back
web based mobile testing.

Note: WebDriver doesn’t readily support new browsers.

Language Support

Earlier in the sessions we learned to create scripts using record and playback functionality. We also saw how to
create them manually using Selenese commands. While creating such test scripts, we come across various
constraints.

Some of the limitations imposed by Selenium IDE are:

e Doesn’t support iterations and conditional statements

e Doesn’t support loops

e Doesn’t support error handling

e Doesn’t support test script dependency
The above impediments can be troubleshot programmatically. WebDriver facilitates the user to choose within
the different programming languages and build their test script in the designated language.

Selenium WebDriver supported programming languages are:
Java
C#
PHP
Pearl
Ruby
6. Python
Thus the user can pick any one of the programming language (provided the language is supported by
WebDriver) based on his/her competency and can start building test scripts.

o~ w e

Speed
When compared to other tools of Selenium suite, WebDriver turns out to be the fastest tool amongst all. The

communication is not channelized via any external intervention; rather the tool directly communicates with the
browser same as that of any user. Thus, WebDriver takes advantage of the browser’s native compatibility
towards automation.

87

WebDriver
Client Libraries

Direct Communication | Web-Browser

Other tools from Selenium suite like Selenium RC don’t communicate directly with the web browser. Client
libraries (test scripts written in any programming language) communicate with Selenium Remote Control
Server and Remote Control communicates with a Selenium Core (JavaScript Program) which in turn
communicates with the web browser. Hence, this sort of twisted communication results as a hindrance on
execution speed.

Selenium RC— —® Selenium Remote —® Selenium Web - Browser

Client Libraries .g—— Control Server <4—— Core

Drivers, Methods and Classes

WebDriver offers a wide range of solutions to some potential challenges in Automation Testing. It helps us to
deal with complex types of web elements like checkboxes, dropdowns, and alerts with the help of dynamic
finders.

Supports WAP
G testing

Handle Switching ﬂ

Handles
ARk O\ vias
< % ~ Navigations
Implement \ ﬂ
- Handles Alerts/

Drivers, Methods and Classes - © www. SoftwareTestingHelp.com

Handles Ajax Calls

With the advent of mobile era, WebDriver API has also matured and introduced some of the key technologies to
enter this horizon. WebDriver enables user to perform web based mobile testing. It provides two of the
essentials drivers to perform web based mobile testing.

e AndriodDriver

e IphoneDriver
Moreover, WebDriver API is fairly simple and easy. It doesn’t include repetitious commands. On the contrary,
Selenium RC embodies many of the tautological commands.

Conclusion

88

In this tutorial, we tried to make you acquainted with Selenium WebDriver by outlining its architecture, features
and limitations.

Here are the cruxes of this article.
e Selenium suite is comprised of 4 basic components; Selenium IDE, Selenium RC, WebDriver, Selenium
Grid.
e WebDriver allows user to perform web based automation testing. WebDriver is a different tool
altogether that has various advantages over Selenium RC.
e WebDriver supports a wide range of web browsers, programming languages and test environments.
e WebDriver directly communicates with the web browser and uses its native compatibility to automate.
e WebDriver’s support doesn’t only limits in the periphery of traditional user actions. Instead it supports
efficient handling mechanisms for complex user actions like dealing with dropdowns, Ajax calls,
switching between windows, navigation, handling alerts etc.
o WebDriver enables user to perform web based mobile testing. To support the same, WebDriver
introduces AndroidDriver and IphoneDriver.
e WebDriver is faster than other tools of Selenium Suite because it makes direct calls to browser without
any external intervention.
Next Tutorial #9: In the next tutorial, we would be discussing about the installation procedure to get started
with WebDriver initiating from the scratch. We would also be discussing about the diverse range of drivers

provided by WebDriver, each catering to different needs.
Till the time our next tutorial is under construction, the readers can visit the Selenium’s official website. A
detailed documentation with reference to Selenium WebDriver is implemented at its official website.

About the author: Shruti Shrivastava is currently working as a Senior Test Engineer with 4+ years of
automation testing experience. She is an ISTQB certified professional and also an active blogger, always
interested in solving testing related problems.

We also have two more authors on this Selenium tutorial’s series to make it complete, useful and relevant.
If you have any specific requests/queries about this or any other tutorial in this Selenium online training
series, let us know in comments.

89

http://www.softwaretestinghelp.com/webdriver-eclipse-installation-selenium-tutorial-9/

Tutorial #9 — Selenium WebDriver Installation with eclipse

WebDriver Entire Setup and Installation with Eclipse — Selenium Tutorial #9

In the previous tutorial, we introduced the basic architecture and features of WebDriver. This is 9th tutorial
in Selenium Tutorial Training Series.

In this tutorial, we would be discussing about the installation procedure to get started with WebDriver
initiating from the scratch. We would also be discussing about the diverse range of drivers provided by
WebDriver, each catering to different testing and environmental needs.

To be able to use WebDriver for scripting, there are some pre-requisites that need to be in place like the basic
environment setup. In this series, we would be using Java as a programming language within our sample

examples. Thus let us kick start with the Java installation.
Java Installation

Step 1: Go to Oracle official site — “JAVA download”, download Java Platform, Standard Edition. All the
recent releases are available on the page.

NTIVIT Y O RO o UL ORI U TRy FELTTUTOYIT D oy

Click on the

Download Link

Java SE Downloads

Latest
available «
Java version = lava Vel
DOWNLOAD * DOWNLOAD &
Java Piatform (JOK) 8us JOK 8u5 & NetBeans 8.0
Java Platform, Standard Edition |
Java SE 8ubs
Fhreretesremoiodey important security fixes. Oracle strongly recommends that all Jav§ SE 8
users upgrade 1o this release
Learn more »
« Instaliation Instructions JDK
DOWNLOAD &
« Release Notes
* Oracle License
« Java SE Products Server JRE

o Certified System Configurations

Step 2: As soon as you click on the Download button, following screen would appear. Accept the License
agreement for Java installation and choose amongst the various catalogued Java Development Kit’s. Select the
one that best suits your system configuration.

90

http://www.softwaretestinghelp.com/selenium-webdriver-selenium-tutorial-8/
http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

« Java Developer Day hands-on workshops (free) and other events
= Java Magazine Supported Operating Systems
JOK MD5 Checksum

Looking for JDK 8 on ARM?
JOK 8 for ARM downloads have movedto the JOK 8 for ARM download page

Choose amongst the available JDX's

Java SE Development Kit 8u I

You must accept the Oracle Binary Code License Agreement for Java SE tp download this

software,
Accept License Agreement | * Decline License Agreement
| Accept the License Agreement

[PIOOUCTT T Desenpuon—— | File Size Download
Linux x86 13358 MB JOK-8uS-linux-1586 rpm
Linux x86 1525 M8 JAR-8uS-linux-1586 tar.gz
Linux x64 133.87 MB JOR-8uS-linux-x64.rpm
Linux x64 15164 MB JOk-8uS-linux-x54 tar.gz
Mac OS X x64 207.79 M8 ick-8uS-macosx-x64.amg
Solaris SPARC 64-bit (SVR4 package) 13568 MB jok-8uS-solaris-sparov@.tarZ
Solaris SPARC 64-bit 9554 MB Jak-8uS-solaris-sparcvd tar.gz
Solaris x64 (SVR4 package) 1359 M8 jak-8us-solaris-x84 tar Z
Solaris x64 93,19 MB |ok-8uS-solans-xB4 tar.gz
Windows x86 15171 M8 JOK-8US-windows-i586 . exe
Windows x54 155.18 MB jak-8uS-windows-x54 exe

Remember to download JDK (Java development Kit). The kit comes with a JRE (Java Runtime environment).

Thus the user isn’t required to download and install the JRE separately.

Eclipse IDE Installation

Step 1: Go to Eclipse official website and navigate to its download page — Eclipse download. Download Eclipse
IDE for Java EE developers. All the recent releases are available on the page.

Make sure you opt and download the appropriate eclipse IDE as per your system configuration. There are two
download links available for 64 bit windows operating system and 32-bit windows operating system.

91

http://www.eclipse.org/downloads/

Home Downloads Users Members Comwmitters Resources Projects About Us

Eclipse Downloads

Packages Java™ 8 Support Developer Builds
Eclipse Kepler (4.3.2) SR2 Packages i [l recl BRA

Eclipse Standard 4.3.2 200
“ Downloaded 2,689,740 Tmes Other Downloads

The Eclipse Platform, and all the tocls needed to develop and debug it fava and Plug-
in Development Tooling. Git and CVS...

Package Solutions Filter Packages v
Eclipse IDE for Java EE Developers 25018 Windows 32 81
Downicaded 1,440,082 Tmes Windows 64 Bt
Tools for java developers creating Java EE and Web applicaticns, including Java IDE.

tools for Java EE. JPA, JSF, Mybym...

Eclipse IDE for Java Developers, 1z3ug Windows 32 Ba
M Dewnicaded 626,241 Tmes Windows 64 Bt

V The essential tocls for any Java developer. including a Java IDE, a CVS client, Git cient,
XML Editor, Mylyn. Maven integration...

Step 2: As soon as we click on the download link, the user is re-directed to the fresh page securing information

about the current download. Click on the download icon and you are done.

Home Downloads Users Members Committers Resources Projects About Us

Eclipse downloads - mirror selection

Downloads Home »
All downloads are provided under the terms and conditions of the Eclipse Fo
Source code Software User Agreement unless otherwise specified
More Packages
Download eclipse-standard-kepler-SR2-win32-x86_64 2ip from:
8 [Taiwan) Computer Center, Shu-Te University (http)
Give Back to
Eclipse Checksums: [MD5] [SHAI]

§5 §$15 $25 ..0f pick a mirror Site below

It may take a few minutes before you can download the complete zip folder.

Step 3: Once downloaded, copy the folder and place it in the desired location on your file system.
3’ eclipse-standard-kep....zip
4.9/201 MB, 32 mins left

Step 4: Extract the zipped folder, a folder named as eclipse can be seen. The folder embodies all the required
application and source files.

92

b {Compuel » New Volume (F:) » Softs between my laptop and1 » INDIGO » Eclipse »I

. Include in ibrary v Share with » Burn New folder

Name Date modified Type Sae

tes
@op . configuration 19-04-2004 2347 File folder
it Places). droping 16.0 F
Sbox I features Folder location on the 03-0
k p2 file system
les L pluging
uments b readme
“we | «eclipseproduct KB
ures * artifacts.xml KB
launch
@) eclipse.ini eclipse 1DE Ke
group | echipse.ini.bak 1XE
" echpsec.exe KE
ter & epl-v10.htmi X8
<) hs_err_pedB321og KB
drive (E) . hs_err_pidi972.log 198
 Volume (F:) & notice.mtml 9 KB
INE CARD (G2)

Step 5: Launch the eclipse IDE using “eclipse.exe” residing inside the eclipse folder. Refer the above
illustration for the same.

Step 6: The application will prompt you to specify the workspace location. Workspace is that location where all
your eclipse projects will be residing. Enter/Browse the desired location or the user can simply opt for the

default location and click on the OK button. -
%) Workspace Launcher 5 o)

Select a workspace

Eclipse stores your projects in 2 folder called a workspace.
Choose a workspace folder to use for this session.

Wodtspaccm '(r Browse...

» Copy Settings

Default workspace location

@ Click on the OK button | 0K l'\ Cancel]

Configuring WebDriver
As we would be using Java as the programming language for this series and in order to create test scripts in
java, we would have to introduce language- specific client drivers. Thus, let us begin with the downloading of
Selenium Java Client Libraries.

Download the Selenium Java Client Libraries

Step 1: Go to Selenium’s official website and navigate to its download page —
“http://docs.seleniumhg.org/download/”. Refer the section in the below illustration where you can find Client
Libraries listed for distinct programming languages. Click on the download link for Java Client Library.

93

http://docs.seleniumhq.org/download/

Selenium Client & WebDriver Language Bindings

In order to create scripts that interact with the Selenium Server (Selenium RC, Selenium Remote
Webdnver) or create local Selenium WebDniver script you need to make use of language-specific chent

drivers. These languages include both 1.x and 2.x style clients.

While language bindings for other languages exist, these are the core ones that are supported by the

man project hosted on google code,

Language Client Version Release Date

Java 2.41.0 2014-03-27 |Download | Change log Javadoc
C= 2.41.0 2014-03-27 QDownload Changelog APl docs
Ruby 2.41.0 2014-03-28 Download Change log AP] docs
Python 2.41.0 2014-03-28 Download Change log API docs
Javascnpt (Node) 2.41.0 2014-03-28 Download Change log AP] docs

It may take a few minutes before you can download the complete zipped folder.

Step 2: Once downloaded, copy the folder and place it in the desired location on your file system.

Download Java Client Library
from here

Step 3: Extract the zipped folder, a folder named as “Selenium-2.41.0.zip“’can be seen. The folder embodies all
the required jar files which enable users to create test scripts in Java.
Thus these libraries can be configured in Eclipse IDE.

Configuring Libraries with Eclipse IDE

Step 1: Navigate towards Eclipse IDE. Create a new java based project following File -> New -> Java Project.

Refer the following figure for the same.
& Plug-in Development - Eckipse |

Edt Novigate Search Project Run Window Help

New Alt+ShiftsN » | 55 Plug-in Project
Open File... Q" Feature Project
Close Ctrfe W l' 9 Project...
Close All Crl=ShifteW | [Task
Save Ciries | @l Component Definition
Save As g Preduct Configuration
<o
Save All Citetht.c | @ Target Definition
Revent Y Package
& Class
ot & Interface
o "2 | &3 Source Foider
Refresh S ¢ Fae
Convert Line Delimiters To "l Folder
Print CtieP | re Erample
s * Y 9 Other.. Ctri+N
Restart r

Step 2: Provide a user defined name for your Java Project. Let us provide the name as Learning_Selenium and
Click on the Finish Button. The newly created project can be viewed at the left side of the screen in the package

explorer panel.

Step 3: Create a new Java class named as “First WebdriverClass” under the source folder by right clicking on it
and navigating to New -> class.

94

Step 4: Now let us configure the libraries into our Java project. For this, select the project and Right click on it.

Select “Properties” within the listed options. The following screen appears, Select “Java Build Path” from the

options.

type filter toxt

Resource

Buslden:

Javs Code Style
Java Compder
Java Ederor
Javadec Locatien
Progect Facets
Pregect References

®@

Java Build Path

18 Souce | 3 Projects] Wk Libanes [, Order and pont
JARs and class folders on the build pagh
o [JRE System Library [Javasé 1))
o Access niles: No rules defined
s Natove bbeaey lecation: (None)
= rescwrcesjor « CAProgram Filies (S5 Java\jrel\5b
= mjar - CA\Program Fites (86) ava\preT\lib
= jasejar - CAProgram Files E6]Java\jrel\ib
54 joejar - C:\Program Files (S6) Java\ yreT\ib
= charsetsjar - C\Program Files (86) Java\pre?\ib
& flepar - CAProgram Files (86)\Java\jrel\lid
= degns jar - CAProgram Files (86)\Java\re?\Iib\ext
- b locatedata jar - C/\Program Files (6] Jave\ rel I\ ext
= sumecjar < CAProgram Fies (86)Usva\rel\lib\ ext
= sumjce_provider jar - C\Program Files (86) Java\jreT\ bbb\ ext
o summacapiiar - CAProgram Fdes (6] Java) jrel Wb\ et
= sumpkesd] jar < CAProgram Files (86)\Java\yreT\AB\ext
. ziphs jar - CAProgram Fdes (6] Java\ jrel b\ est

Bemnove

bhgrate JAR File.

(

ok][Comce |

Step 5: By default, “Libraries” tab is opened. If not, click on the “Libraries” tab. Then, click on the “Add
External Jars...” button. Browse to the location where we have saved the extracted folder for Java Client

Libraries.

Step 6: Select all the JAR files present in the “selenium-java-2.41.0” folder and click on open button within the
dialog box. The propertles dlalog box should look like the below illustration.

type filter text

Resource

Budders

Juva Build Path
Jova Code Style
Java Compier
Java Edtor
lovadoc Locaten
Project Facets
Project References
Run/Debug Settings
Task Repostory
Tack Tags
Vahidation
WikTet

@

Java Build Path & v w
r————= v = = |
(8 Source | i3 Projects | B Ubranes | & Order and Expon]
JARs and class folders on the build path
apache-mimetj 0.6 jor - F\ WO, 5ok
beh-1.30 jar - P\WMWMMW
Coh-nodep-21.3 o - ok Seemumseenum joe 2410l

commons-codec-1.8 jar - F\Work\Sel

Jlm i v
e o _‘x’ L Add Yanable...

e-2AL 0 Addlbary. |
Java-241 D\seleni
'_‘___nm Add Class Folder...
tenr Java-241 D\selenn
<ommlo”nq-u.l,n MWM\WWMM Add Eomnel Clom Foiety
P AAJ‘F F\Work\Selenium’ seleni J""A' ol 2 -

gusva-150 jar - FAWork\Selenmmi\selenium-java-241 0\selenium-2 410 s
hamcrest-core-1.3 jar - F\Work\Sel V\selenmm:-jave-241 .0\ "—@
hamcrest-Wbrary-13 jar - FA\Work\ Seleniamsek Jova-241 D\selenn,
Mmiunit-2.13 ja - nw«mum-—umu Mborate JAR Fie
Mmdunit-core-j3-2.13 jar - F\Work\Seleni warn-java-2A1 Dselers
hetpcient-4.3.1 jar - F\Work\Selenium)\sek Jova-241 0\sel 2
hatp 4.3 jar - F\Work\Selenium\selens Jova-2A10\selerwam-241.
hetomime-4.3.1iar - F\Work!\Seleniumselenaam- iava-2.41 Dsel R
« { . I' »

ox..] [oConcdd)

Step 7: Click on the “OK” button within the dialog box so as to complete the configuration part of Selenium

Libraries in our java project.

95

The project will look like the following:

4 & Leaming Selenium B
a (B sic public class First_WebdriverClass {
4 5 (default package)
5 [5) First WebdriverClass.java }
» B JRE System Library [JavaSE-17]
» B Referenced Libraries

Available Drivers
There are a number of driver classes available in WebDriver, each catering a specific web browser. Each
browser has a different driver implementation in WebDriver.

In WebDriver, a few of the browsers can be automated directly where as some of the web browsers require an
external entity to be able to automate and execute the test script. This external entity is known as Driver Server.
Thus, user is required to download the Driver Server for different web browsers.

Notice that there is a separate Driver Server for each of the web browser and user cannot use one Driver Server
for web browsers other than the one it is designated for.

Below is the list of available web browsers and their corresponding Server Drivers.

No (No external server is required to spin the Firefox browser)

I, -

Yes (Internet Explorer Driver Server)

Yes (OperaDriver)

Yes (SafariDriver)

No (No external entity is required to spin the HTML Unit)
Conclusion

In this tutorial, we accustomed you with all the environment setup and installation to be done prior to creation
of WebDriver test scripts.

Here are the cruxes of this article.

« Prior to the creation of WebDriver based test scripts, few utilities and packages are required to be
installed.

o Install IDK (Java Development Kit). Remember, the user is not supposed to install JRE separately
because it is distributed bundled with the Kkit.

96

o Download Eclipse IDE. User is only required to download the package and he/she is good to go. No
other installation is required with Eclipse.

« Download Java Client Libraries to be able to create test script in java programming language.

« Launch eclipse using eclipse.exe. Select the workspace where you would want to save the projects.

« Create a new java project in the eclipse. Create a new java class within the project.

o Configure the eclipse by importing jars files for Java Client Drivers.

e In WebDriver, a few of the browsers can be automated directly where as some of the web browsers
require an external Driver Server.

o Firefox and HTML Unit are the only browsers that cannot be automated directly. Thus they do not
require any separate Driver Server. All other commonly known web browsers like Chrome, Safari,
Internet Explorer etc. requires Driver Servers.

Next Tutorial #10 => Now that we are done with the entire setup and installation, in the next tutorial we would

create our own WebDriver test script using Java.

A remark for the readers: While our next tutorial of the Selenium tutorials series is in the processing mode,
install the packages mentioned in this tutorial and the required utilities to get started. Most of the WebDriver
related packages can be found at the Selenium’s official website.

Let us know if you face any issues in installation process.

97

http://www.softwaretestinghelp.com/selenium-webdriver-tutorial-10/

Tutorial #10 — My first Selenium WebDriver script (Must Read)
Implementation of Our First WebDriver Script — Selenium WebDriver Tutorial #10
In the previous two tutorials, we made you acquainted with the basic architecture and features of

WebDriver and the infrastructure required to get started with Selenium WebDriver. Assuming that you all might
have set up the system with all the necessary utilities and packages, we will move further with the

implementation of our first WebDriver test script.

Therefore, motioning ahead with the consequent Selenium WebDriver tutorial, we would be creating
WebDriver script. We would also scatter the light on the basic and commonly used WebDriver commands.
We would also learn about the locating strategies of Ul elements and their inclusion in the test scripts. We
would also study Get Commands in the detail.

Script Creation

For script creation, we would be using “Learning_Selenium” project created in the previous tutorial and

“gmail.com” as the application under test (AUT).

Scenario:
e Launch the browser and open “Gmail.com”.
« Verify the title of the page and print the verification result.
o Enter the username and Password.
e Click on the Sign in button.
o Close the web browser.
Step 1: Create a new java class named as “Gmail Login” under the “Learning_Selenium” project.

Step 2: Copy and paste the below code in the “Gmail Login.java” class.
1 import org.openga.selenium.By;

2 import org.openga.selenium.WebDriver;

3 import org.openga.selenium.WebElement;

4 import org.openga.selenium.firefox.FirefoxDriver;

5

6 public class Gmail_Login {

7 [**

8 * @param args

9 *

10 public static void main(String[] args) {

11

12 /I objects and variables instantiation

13 WebDriver driver = new FirefoxDriver();

14 String appUrl = "https://accounts.google.com”;

98

http://www.softwaretestinghelp.com/selenium-webdriver-selenium-tutorial-8/
http://www.softwaretestinghelp.com/selenium-webdriver-selenium-tutorial-8/
http://www.softwaretestinghelp.com/webdriver-eclipse-installation-selenium-tutorial-9/

15
16 /I launch the firefox browser and open the application url

17 driver.get(appUrl);

18

19 /I maximize the browser window

20 driver.manage().window().maximize();

21

22 Il declare and initialize the variable to store the expected title of the webpage.
23 String expectedTitle =" Sign in - Google Accounts *;

24

25 /I fetch the title of the web page and save it into a string variable

26 String actualTitle = driver.getTitle();

27

28 /I compare the expected title of the page with the actual title of the page and print the result
29 if (expectedTitle.equals(actualTitle))

30 {

31 System.out.printin("Verification Successful - The correct title is displayed on the web page.™);
32 }

33 else

34 {

35 System.out.printin("Verification Failed - An incorrect title is displayed on the web page.");
36 }

37

38 // enter a valid username in the email textbox

39 WebElement username = driver.findElement(By.id("Email"));

40 username.clear();

41 username.sendKeys("TestSelenium™);

42

43 // enter a valid password in the password textbox

44 WebElement password = driver.findElement(By.id("Passwd"));
45 password.clear();

46 password.sendKeys(*"password123");

47

48 [/ click on the Sign in button

49 WebElement SigninButton = driver.findElement(By.id("'signin™));
50 SignInButton.click();

51

52 /I close the web browser

53 driver.close();

54 System.out.printIn("Test script executed successfully.");

55

56 // terminate the program

57 System.exit(0);

58 }

59}

99

The above code is equivalent to the textual scenario presented earlier.

Code Walkthrough

Import Statements:

1 import org.openga.selenium.WebDriver;

2 import org.openga.selenium.firefox.FirefoxDriver;
3 import org.openga.selenium.WebElement;

4 import org.openga.selenium.By;

Prior to the actual scripting, we need to import the above packages:

import org.openga.selenium.WebDriver — References the WebDriver interface which is required to instantiate a
new web browser.

import org.openga.selenium.firefox.FirefoxDriver — References the FirefoxDriver class that is required
instantiate a Firefox specific driver on the browser instance instantiated using WebDriver interface.

import org.openga.selenium.WebElement — References to the WebElement class which is required to instantiate
a new web element.

import org.openga.selenium.By — References to the By class on which a locator type is called.

As and when our project would grow, it is evident and logical that we might have to introduce several other
packages for more complex and distinct functionalities like excel manipulations, database connectivity, logging,
assertions etc.

Object Instantiation

WebDriver driver = new FirefoxDriver();

We create a reference variable for WebDriver interface and instantiate it using FirefoxDriver class. A default
Firefox profile will be launched which means that no extensions and plugins would be loaded with the Firefox
instance and that it runs in the safe mode.

Launching the Web browser

driver.get(appUrl);

A get() method is called on the WebDriver instance to launch a fresh web browser instance. The string character
sequence passed as a parameter into the get() method redirects the launched web browser instance to the
application URL.

Maximize Browser Window

driver.manage().window().maximize();

The maximize() method is used to maximize the browser window soon after it is re-directed to the application
URL.

Fetch the page Title

driver.getTitle();

100

The getTitle() method is used to fetch the title of the current web page. Thus, the fetched title can be loaded to a
string variable.
Comparison between Expected and Actual Values:

1 if (expectedTitle.equals(actual Title))
{

System.out.printin("Verification Successful - The correct title is displayed on the web page.");

}

else

{

System.out.printin("Verification Failed - An incorrect title is displayed on the web page.");

}
The above code uses the conditional statement java constructs to compare the actual value and the expected
value. Based on the result obtained, the print statement would be executed.

0 N O 01 AW DN

WebElement Instantiation
WebElement username = driver.findElement(By.id(“Email’)),
In the above statement, we instantiate the WebElement reference with the help

of “driver.findElement(By.id(“Email”’))”. Thus, username can be used to reference the Email textbox on the
user interface every time we want to perform some action on it.

Clear Command

username.clear();

The clear() method/command is used to clear the value present in the textbox if any. It also clears the default
placeholder value.

sendKeys Command

username.sendKeys(“TestSelenium “);

The sendKeys() method/command is used to enter/type the specified value (within the parentheses) in the
textbox. Notice that the sendKeys() method is called on the WebElement object which was instantiated with the
help of element property corresponding to the Ul element.

The above block of code enters the string “TestSelenium” inside the Email textbox on the Gmail application.

sendKeys is one of the most popularly used commands across the WebDriver scripts.
Click Command

SigninButton.click();

Like sendKeys(), click() is another excessively used command to interact with the web

elements. Click() command/method is used to click on the web element present on the web page.

The above block of code clicks on the “Sign in” button present on the Gmail application.

101

Notes:
o Unlike sendKeys() method, click() methods can never be parameterized.
o Attimes, clicking on a web element may load a new page altogether. Thus to sustain such cases, click()
method is coded in a way to wait until the page is loaded.
Close the Web Browser
driver.close();

The close() is used to close the current browser window.

Terminate the Java Program
System.exit(0);

The Exit() method terminates the Java program forcefully. Thus, remember to close all the browser instances
prior terminating the Java Program.

Test Execution
The test script or simply the java program can be executed in the following ways:

#1. Under the Eclipse’s menu bar, there is an icon to execute the test script. Refer the following figure.
3 Jva - Leaming Seleniumsec/Gmai Logingmna - Ecipse. . TN
file fdt Jource Refactor Navigate Segrch Project Run Window Hep

':v) %‘Ov%v :':;Gv é\?;‘}' :‘3/.'-01: v.-v:',v‘/’_
1% Package Explorer I [;r;] v 7 7 00 Gmail Loginjava £3
& Demo | » & Learming Selenium » (B sec b (default package) » @
= ! 1
&> Leaming_Selenium L ise
@ src Click here to execute the test script {
{# (default package) Systes.out.println("Verification Fai
J] First WebdriverClassjava }
J) Gmail_Loginjava z -
B\ JRE System Library [Java5E-] enter a valid ysernase in the esail ¢

HebElement username = driver,findlesent

B\ Refesenced Libraries usernase.clear();

| mmm -

Make a note that only the class which is selected would be executed.

#2. Right click anywhere inside the class within the editor, select “Run As” option and click on the “Java
Application”.
#3. Another shortcut to execute the test script is — Press ctrl + F11.

At the end of the execution cycle, the print statement “Test script executed successfully.” can be found in the
console.

Locating Web Elements

Web elements in WebDriver can be located and inspected in the same way as we did in the previous tutorials of
Selenium IDE. Selenium IDE and Firebug can be used to inspect the web element on the GUI. It is highly
suggested to use Selenium IDE to find the web elements. Once the web element is successfully found, copy and

102

paste the target value within the WebDriver code. The types of locators and the locating strategies are pretty

much the same except for the syntax and their application.

In WebDriver, web elements are located with the help of the dynamic finders

(findElement(By.locatorType(“locator value™))).

Locator Type
id

className
Sample Code:

linkText

partialLinkText

name

xpath

cssSelector

tagName

driver.findElement(By.id(“Email”)),

Syntax

driver.findElement
(By.id(“ID _of Element”))

driver.findElement
(By.className
(“Class_of Element”))

driver.findElement
(By.linkText(“Text”))

driver.findElement
(By.partialLinkText
(“Partial Text™))

driver.findElement
(By.name
(“Name_of Element”))

driver.findElement
(By.xpath(“Xpath™))

driver.findElement
(By.cssSelector
(“CSS Selector™))

driver.findElement
(By.tagName(“input™))

Description

Locate by value of
the “id” attribute

Locate by value of
the “class” attribute

Locate by value of the
text of the hyperlink

Locate by value of the
sub-text of the
hyperlink

Locate by value of the
“name” attribute
Locate by value

of the xpath

Locate by value of

the CSS selector

Locate by value of
its tag name

103

System.out.println("Test script executed successfully.”);

‘ m

& Problems @ Javadoc | [, Declaration | & Console &2

<terminated> Gmail Login [Java Application] C:\Program Files (86)\Java\jre7\bin\javaw.exe (21-Apr-20.

Verification Successful - The correct title is displayed on the web page.
Test script executed successfully.

Locator Types and their Syntax
Conclusion

In this tutorial, we developed an automation script using WebDriver and Java. We also discussed the various

components that constitute a WebDriver script.

Here are the cruxes of this Selenium WebDriver Tutorial:

Prior to the actual scripting, we need to import a few packages to be able to create a WebDriver script.

« importopenga.selenium.By;

« importopenga.selenium.WebDriver;

« importopenga.selenium.WebElement;

o importopenga.selenium.firefox.FirefoxDriver;

A get() method used to launch a fresh web browser instance. The character sequence passed as a
parameter into the get() method redirects the launched web browser instance to the application URL.
The maximize() method is used to maximize the browser window.

The clear() method is used to clear the value present in the textbox if any.

The sendKeys() method is used to enter the specified value in the textbox.

Click() method is used to click on the web element present on the web page.

In WebDriver, web elements can be located using Dynamic finders.

The following are the available locator types:

e id

e className

e nName
e Xpath

e cssSelector

e linkText

e partialLinkText
o tagName

Moving ahead, in the next tutorial, we would shift our focus towards a framework that aids to Automation
testing known as TestNG. We would have a detailed study on the various kinds of the annotations provided by

the framework.

104

Next tutorial #11: Before diving deep into Frameworks we will see details about JUnit — an open source unit
testing tool. Most of the programmers use JUnit as it is easy and does not take much effort to test. This tutorial
will give an insight about JUnit and its usage in selenium script.

A remark for the readers: While our next tutorial of the Selenium series is in the processing mode, readers
can start creating their own basic WebDriver scripts. For more advance scripts and concepts, we will have
various other Selenium WebDriver tutorials coming up in this series.

Let us know in comments if you have any problem creating or executing the WebDriver scripts.

105

http://www.softwaretestinghelp.com/selenium-junit-framework-selenium-tutorial-11/

Tutorial #11 — Introduction to JUnit

Introduction to JUnit Framework and Its Usage in Selenium Script —

This tutorial will give an insight about JUnit and its usage in selenium script. This is tutorial #11 in

Selenium Tutorial #11

our comprehensive Selenium tutorials series.

Basically JUnit is an open source unit testing tool and used to test small/large units of code. To run the JUnit

test you don’t have to create class object or define main method. JUnit provide assertion library which is used to

evaluate the test result. Annotations of JUnit are used to run the test method. JUnit is also used to run the

Automation suite having multiple test cases.

Adding JUnit library in Java project
First we will learn how to add JUnit library in your Java project:

Step #1: Right click on Java project->Build Path->Configure Build path

Step #2: Click Libraries->Add Library

Resource

Builders

Java Build Path
Java Code Style
Java Compiler

Jova Editor

Jevadoc Location
Project Facets
Project References
Refactoring History
Run/Debug Settings
Server

Task Repository
Task Tags
Vakdation

WikiText

Step #3: Click on Junit.

Java Build Path

(3 Source | 13 Pro,«‘} B\ Libearies

JARs and class {olders ofrtirebovidpoth
B\ JRE System Library [JavaSE-1.6]

(8] Propertes tor lemmomPrcyect W vt s |

\» Order and Export

[Add Extermal Class Folder...

106

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://junit.org/

Select the library type to add. @

Connectivity Driver Definition
CXF Runtime
EAR Libraries

JRE Sﬁem Libfai

Maven Managed Dependencies
Plug-in Dependencies

Server Runtime

User Library

Web App Libraries

x

@ < Back J[Next > I[Finish ‘[Cancel]

|

Step #4: Select Junit4->Finish

107

JUnit Library
Select the JUnit version to use in this project. é})

JUnit library version: w
Current location: bpx\plugins\org.junit}s.2.v3_8_2_v20100427-

Source location:

Not found

@

T

S

Step #5: Click OK.

type filter text

. Resource
Builders
Java Build Path

» Java Code Style

o Jave Compiler

» Java Editor
Javadoc Lecation
Project Facets
Project References
Refactoning History
Run/Debug Settings
Server

» Task Repository
Task Tags

& Vahdation
WikiText

There are many frameworks like Data Driven Framework, Keyword Driven Framework, and Hybrid
Framework which use Junit tool as test runner and which will help to start the batch execution and reporting.

————

Java Build Path
[Source | > Projects| B Libraries [, Order and Expont]
| JARs and class folders on the buidd path:

[= -RESyﬁtml:bdf‘y[onS.(-lbl
> Unad

JUnit Annotations Used in Selenium scripts

There are many annotations available in Junit. Here we have described few annotations which are used very

frequently in Selenium scripts and framework.

Add External JARS...

Add Vanable...

Add Class Folder...

(e g— f— f— g—

Add External Class Folder...

Edwt...
Remove

—————
)

Migrate JAR File

108

#1. @Test
@Test annotation is used to run a Junit test.

Example:
1 @Test
2 public void junitTest()

3{
4 System.out.printin("Running Junit test");

5 Assert.assertEquals(1,1);

6}

How to Run a Junit test:
Navigate to run ->Run as Junit test

#2. @Before:

@Before annotation is used to run any specific test before each test.

1 public class Junttest {

2 @Before

3 public void beforeTest(){

4 System.out.printin("Running before test™);
5}

6

7 @Test
8 public void junitTest(){

9 System.out.printin(*Running Junit test");
10}

11}

Output:

Running before test

Running Junit test

Example of before annotation using two junit test method.

1 public class Junttest {

2 @Before

3 public void beforeTest(){

4 System.out.printin("Running before test");
5}

6

7 @Test

8 public void junitTest(){

9 System.out.printin("Running Junit test");
10 }

11

12 @Test

109

13 public void secondJunitTest(){

14 System.out.printIn("Running second Junit test");
15}

16 }

Output:

Running before test

Running Junit test

Running before test

Running second Junit test

Before running junitTest method beforeTest method will run. Similarly before running secondJuntiTest again
beforeTest method will run and produces output like above.

#3. @BeforeClass
This method executes once before running all test. The method has to be a static method. Initialization of

properties files, databases etc are done in beforeClass method.

1 public class Junttest {
2 @BeforeClass

3 public static void beforeClassTest(){

4 System.out.printin("Executed before class method");
5}

6

7 @Test

8 public void junitTest(){

9 System.out.printin("Running Junit test");

10 }

11

12 @Test

13 public void secondJunitTest(){

14 System.out.printIn("Running second Junit test");

15}
16 }

Output:

Executed before class method
Running Junit test

Running second Junit test

#4. @After

This method executes after each test.

1 public class Junttest {
2 @Test

110

3 public void junitTest(){
4 System.out.printin("Running Junit test");

5}

6

7 @After

8 public void afterTest(){

9 System.out.printin("Running after method");

10}

11}

Output:

Running Junit test

Running after method

#5. @AfterClass

Like @BeforeClass, @AfterClass executes once after executing all test methods. Like @BeforeClass method,
@AfterClass method has to be a static method.

1 public class Junttest {
2

3 @Test

4 public void junitTest(){

5 System.out.printIn("Running Junit test™);

6}

-

8 @Test

9 public void secondJunitTest(){

10 System.out.printIn("Running second Junit test");
11}

12

13 @AfterClass

14 Public static void afterClassTest(){

15 System.out.printIn("Running afterclass method");
16 }

17}

Output:

Running Junit test

Running second Junit test

Running afterclass method

Junit assertions are used to validate certain condition and stops execution of program if the conditions are not
satisfied.

111

#6. Parameterized Junit class:

Parameterized class is used to run same scenario with multiple dataset.

Below is the example to pass multiple parameters in a Junit test.

@Parameters annotation tag is used to pass multiple data. Here, we have taken 2*2 dimensional array and the

data can be visualized like below:

Tom

30

Harry

40

1 @RunWith(Parameterized.class)
2 public class Junttest {

3 public String name;

4 public int age;

5 public Junttest(String name,int age){

6 this.name=name;
7 this.age=age;
8}

9

10 @Test

11 public void testMethod(){
12 System.out.printin("Name is: "+name +" and age is: "+age);

13}
14

15 @Parameters

16 public static Collection<Object[]> parameter(){

17 Obiject[][] pData=new Obiject[2][2];
18 pData[0][0]="Tom";

19 pData[0][1]=30;

20 pData[1][0]="Harry";

21 pData[1][1]=40;

22 return Arrays.asList(pData);

23}
24}

JUnit Assertions

JUnit assertEquals: This checks if the two values are equal and assertion fails if both values are not equal.
This compares Boolean, int, String, float, long, char etc.

Syntax:

Assert.assertEqual(“‘excepted value”, "actual value”);

112

Example:

Assert.assertEqual(“ABC”,”ABC”); I/Both the strings are equal and assertion will pass.
Assert.assertEqual(“ABC”, ”"DEF”); [|Assertion will fail as both the strings are not equal.
Assert.assertEqual(““Strings are not equal”, “ABC”, ”’DEF”); [Imessage will be thrown if equal condition is not
satisfied.

Below is the example of use of JUnit assertion in selenium:
1 String username=driver.findElement(By.id(“username”)).getText();
2 String password=driver.findElement(By.id(‘“password”)).getText();

3 Assert.assertEqual(“Mismatch in both the string”, username, password);

In above example assertion will fail as both the strings are not equal. One is text of username field and other is
the text of password field.

JUnit assertTrue: Returns true if the condition is true and assertion fails if the condition is false.
Assert.assertTrue(“message”, condition),

Assert.assertTrue(““Both the strings are not equal”, (“HelloWorld”).equals(“HelloWorld”)),
Here assertion will pass as both the strings match. It will print message if the assertion fails.

JUnit assertFalse: Returns true if the condition is false and assertion fails if the condition is true.
Assert.assertFalse(“message”, condition),

Assert.assertFalse(“Both the strings are equal”, (“Hello”).equals(“HelloWorld”)),

There will not be any assertion error as the condition is false.

Conclusion:

Most of the programmers use Junit as it is easy and does not take much effort to test. A simple green or red bar
will show the actual result of the test. Junit makes life easy as it has its own set of libraries and annotations.
Here we have also described commonly used annotations used with selenium scripts and framework.

More detail about framework and use of Junit annotations will be discussed in upcoming tutorial which is
dedicated exclusively for framework design using Junit. This tutorial will help us in designing the framework
using Junit.

Next Tutorial #12: In next tutorial we would discuss all about TestNG, its features and its applications.
TestNG is an advance framework designed in a way to leverage the benefits by both the developers and testers.

113

http://www.softwaretestinghelp.com/testng-framework-selenium-tutorial-12/

Tutorial #12 — Introduction to TestNG (Must Read)

How to Use TestNG Framework for Creating Selenium Scripts — TestNG
Selenium Tutorial #12

In the last few tutorials, we shed light on the basic and commonly used WebDriver commands. We also learned
about the locating strategies of Ul elements and their inclusion in the test scripts. And therefore, we developed
our very first WebDriver Automation Test Script.

Moving ahead with this tutorial, we would discuss all about TestNG, its features and its applications.
TestNG is an advance framework designed in a way to leverage the benefits by both the developers and
testers. For people already using JUnit, TestNG would seem no different with some advance features. With the
commencement of the frameworks, JUnit gained an enormous popularity across the Java applications, Java
developers and Java testers, with remarkably increasing the code quality.

See also => JUnit Tutorial and its usage in Selenium scripts
Despite being an easy to use and straightforward framework, JUnit has its own limitations which give rise to the

need of bringing TestNG into the picture. TestNG was created by an acclaimed programmer named as “Cedric
Beust”. TestNG is an open source framework which is distributed under the Apache software License and is
readily available for download.

Talking about our requirement to introduce TestNG with WebDriver is that it provides an efficient and effective
test result format that can in turn be shared with the stake holders to have a glimpse on the
product’s/application’s health thereby eliminating the drawback of WebDriver’s incapability to generate test
reports. TestNG has an inbuilt exception handling mechanism which lets the program to run without terminating
unexpectedly.

Both TestNG and JUnit belong to the same family of Unit Frameworks where TestNG is an extended version to
JUnit and is more extensively used in the current testing era.

Features of TestNG
e Support for annotations
e Support for parameterization
e Advance execution methodology that do not require test suites to be created
e Support for Data Driven Testing using Dataproviders
o Enables user to set execution priorities for the test methods
e Supports threat safe environment when executing multiple threads
o Readily supports integration with various tools and plug-ins like build tools (Ant, Maven etc.),
Integrated Development Environment (Eclipse).

114

http://www.softwaretestinghelp.com/selenium-webdriver-tutorial-10/
http://www.softwaretestinghelp.com/selenium-junit-framework-selenium-tutorial-11/
http://testng.org/doc/index.html

o Facilitates user with effective means of Report Generation using ReportNG
TestNG versus JUnit
There are various advantages that make TestNG superior to JUnit. Some of them are:

e Advance and easy annotations
« Execution patterns can be set
o Concurrent execution of test scripts
o Test case dependencies can be set
Annotations are preceded by a “@” symbol in both TestNG and JUnit.

So now let us get started with the installation and implementation part.

TestNG Installation in Eclipse

Follow the below steps to TestNG Download and installation on eclipse:

Step 1: Launch eclipse IDE -> Click on the Help option within the menu -> Select “Eclipse Marketplace..”
option within the dropdown.

@& Welcome

(?) Help Contents
&7 Search
Dynamic Help

Key Assist... Ctrl+Shift+L
Tips and Tricks...
Cheat Sheets...

Eclipse Marketplace... I
Check for Updates
Install New Software...

About Eclipse

Step 2: Enter the keyword “TestNG” in the search textbox and click on “Go” button as shown below.

115

ey

O ot T e

| Eclipse Marketplace o%

Select solutions to install. Press Finish to proceed with installation. R____']]
Press the mfomauon bcmon to seed demled ovemew and 3 hnk to ‘more mformmon

Search | Recent | Popular | Installed| , May05/22|

Find: TestNG Q7] | A Markets ~ | | All Categories ~ | |Go

Step 3: As soon as the user clicks on the “Go” button, the results matching to the search string would be

-~

Featured

Vaadin Plugin for Eclipse

Promoted - Vaadin is a powerful open source Ul library for creating rich web
vaadin }> userinterfaces. It is a Java EE compatible component library that makes it
easy.. more info

displayed. Now user can click on the Install button to install TestNG.

B

Eclipse Marketplace %

Select solutions to install, Press Finish to proceed with installation. H
Press the information button to see a detailed overview and a link to more information,

Search | Recent | Popular | Installed| , May05/22]
Find: TestNG Q.7 |All Markets ~) [l Categories ~| [Go)

TestNG for Eclipse

TestNG plug-in for Eclipse. more info
. by Cédnc Beust, Apache 2.0

Step 4: As soon as the user clicks on the Install button, the user is prompted with a window to confirm the

(] Installs: 97.9K (4,880 tast month)

installation. Click on “Confirm” button.

Confirm Selected Features @
Confirm the features to include in this provisioning operation. Or go back to choose H
more solutions to install.

4 [V] g TestNG for Eclipse http://beust.com/eclipse
i TestNG
@ < Jnstall More | Confirm > finish | [Cancel |

116

Step 5: In the next step, the application would prompt you to accept the license and then click on the “Finish”

button.

Step 6: The installation is initiated now and the progress can be seen as following:

!

We are advised to restart our eclipse so as to reflect the changes made.

® Installing Software

@ Installing Software

Fetching org.testng.eclipse_6.8.6.20141201_22...¢/plugins/ (621.09kB of 2.86MB at 47 91kB/s)

[] Always run in background

!

[Run in Backgcound] [

Cancel] [TW;

i

Upon restart, user can verify the TestNG installation by navigating to “Preferences” from “Window” option in

the menu bar. Refer the following figure for the same.

unliW‘mdowl Help
_—

v New Window
e New Editor R
Javi
Open Perspective
S g Show View
ca Customize Perspective...
Save Perspective As...
jav i]
Reset Perspective...
t q 13
Close Perspective
cla Close All Perspectives
te
te Navigation
te
i Preferences 5

(Click on image to view enlarged)

Excluded stack traces: org.testng.internal org.testng. TestRunner org.testng.SuteRunner org.tests

type filter text TestNG
2::‘"" TestNG workbench preferences
Help Output directory: /test-output
- Install/Update || Absolute output path
> Java || Disable default listeners
Maven
. Mylyn Template XML file:
- Run/Debug
4| TestNG
Run/Debug
ata Collector
Valdation
» XML

117

Creation of Sample TestNG project
Let us begin with the creation of TestNG project in eclipse IDE.

Step 1: Click on the File optlon Wlthl the menu -> C|ICk on New -> Select Java Project.

Window Help

the “Finish” button and your Java project is ready.

Create a Java Project

Create a Java project in the workspace or in an external location.

New m—smmu];g, Java Project |
Open File " Project...
Close Ctrl+W | 5 Package
Close All Ctri+Shift+W | (& Class
Save Ctrl+S G Intesface
B Swvehs. G Enum :
Save All Ctrteshiftes | €| Annotation
Revest | @2 Source Folder
| 45 Java Working Set
Move... (5 Folder
Rename.., [$ File
&) Refresh F5 | @ Untitled Text File
Convert Line Delimiters To » Y JUnit Test Case
@y Print.. CtrleP | [T Task
Switch Workspace » 1 Example...
Restart 9 Other... CtrieN

Step 2: Enter the project name as “DemoTestNG” and click on “Next” button. As a concluding step, click on

Project name: DemoTestNG

[V] Use default location

H:\Selenium\Selenium Webdriver\DemoTestNG

JRE

Next > Finish]I [Cancel J

Step 3: The next step is to configure the TestNG library into the newly created Java project. For the same, Click
on the “Libraries” tab under Configure Build Path. Click on “Add library” as shown below.

118

type filter text 1| Jave Build Path e v
b Resource —_—
Builders (% Source | 2 Projects B Libearies | &, Order and Export. &
Java Build Path JARs and class folders on the build path:
> Jova Code M 5 B JRE System Library [JavaSE-16) [Add JARs...]
o Java Compiler
b Java Editor [Add External JARs...]
Javadoc Location
Project References [Add Vaniable...]
Run/Debug Settings :
TeathG T £
| Add Class Folder... |
| Add Externai Class Folder...|
Edit |
Remove [
Migrate JAR File [‘—
@ oo [G |

Step 4: The user would be subjected with a dialog box promoting him/her to select the library to be configured.

Select TestNG and click on the “Next” button as shown below in the image. In the end, click on the “Finish”

button.

©)

J| Select the kibrary type to 3dd.

JRE System Libeary
Wnit

Migrate JAR Fle...

(

ok || Concel

)

The TestNG is now added to the Java project and the required libraries can be seen in the package explorer

upon expanding the project.

119

[Package Explorer &2 Ju JUnit

4 L;jj- DemoTestNG

(B src

> B JRE System Library [JavaSE-1.6]

> B TestNG

Add all the downloaded Selenium libraries and jars in the project’s build path as illustrated in the previous

tutorial.

Creating TestNG class

- =
® T
=3

Now that we have done all the basic setup to get started with the test script creation using TestNG. Let’s create

a sample script using TestNG.

Step 1: Expand the “DemoTestNG” project and traverse to “src” folder. Right click on the “src¢”’package and

navigate to New -> Other..

4 1= DemoTestNG

. = JR New » |22 Java Project
g = Te Open in New Window (3 Project..
== Frame
& Leamni Open Type Hierarchy F4 | Package
1= Seleni Show In Alt+Shift+W » | & Class
J | >
= WebD & Copy Ctrle C 6 Interface
5 Copy Qualified Name G Enum
“ paste CtrisV @ Annotation
; Delete Delete @ Source Folder
| 45 Java Working Set
Build Path > C$ Folder
Source Alt+Shift+S » | (¢ File
Refactor Alt+Shift+T » | @ Untitled Text File
gy Impont.. EY JUnit Test Case
&3 Bport.. [Other.. q

Step 2: Expand TestNG option and select “TestNG” class option and click on the “Next” button.

120

Select a wizard —<}-

Create a new file resource r

Wizards:
Jtype filter text]
4 (= General -
| § File
Y Folder
1= Project
7 Untitled Text File
b & CVS
» = Git
b (= Java
> = Plug-in Development
& > TestNG
I TestNG class
b &> User Assistance -

@ TN Y T

Step 3: Furnish the required details as following. Specify the Source folder, package name and the TestNG
class name and click on the Finish button. As it is evident from the below picture, user can also check various
TestNG notations that would be reflected in the test class schema. TestNG annotations would be discussed later

in this session.

New TestNG class

Specify additional information about the test class.

Source folder: / DemoTestNG/src Browse...

Package name: TestNG Browse...

Class name: DemoTestNG

Annotations

[7] @BeforeMethod [| @AfterMethod [~ | @DataProvider
["] @BeforeClass | | @AfterClass

[7| @BeforeTest [] @AfterTest

[7] @BeforeSuite [T| @AfterSuite

XML suite file:

@ [<Back] nea> |M finish ||| Cancel |

121

The above mentioned TestNG class would be created with the default schema.

|J] DemoTestNG.java 2
7 package TestNG;

import org.testng.annotations.Test;

public class DemoTestNG {

wiest

public void () {

}
}

Now that we have created the basic foundation for the TestNG test script, let us now inject the actual test code.

We are using the same code we used in the previous session.

Scenario:

Code:

Launch the browser and open “gmail.com”.

Verify the title of the page and print the verification result.
Enter the username and Password.

Click on the Sign in button.

Close the web browser.

1 package TestNG;
2 import org.openga.selenium.By;

3 import org.openga.selenium.WebDriver;
4 import org.openga.selenium.WebElement;

5 import org.openga.selenium.firefox.FirefoxDriver;
6 import org.testng.Assert;

7 import org.testng.annotations. Test;

8

9 public class DemoTestNG {

10 public WebDriver driver = new FirefoxDriver();
11 String appUrl = "https://accounts.google.com";
12

13 @Test

14 public void gmailLogin() {

15 [launch the firefox browser and open the application url
16 driver.get("https://gmail.com&aquot;);

17

18 /I maximize the browser window

19 driver.manage().window().maximize();

20

122

21 /I declare and initialize the variable to store the expected title of the webpage.

22 String expectedTitle = " Sign in - Google Accounts ";

23

24 [l fetch the title of the web page and save it into a string variable

25 String actualTitle = driver.getTitle();

26 Assert.assertEquals(expectedTitle,actualTitle);

27

28 // enter a valid username in the email textbox

29 WebElement username = driver.findElement(By.id("Email"));
30 username.clear();

31 username.sendKeys(" TestSelenium");

32

33/ enter a valid password in the password textbox

34 WebElement password = driver.findElement(By.id("Passwd"));
35 password.clear();

36 password.sendKeys("password123");

37

38 /I click on the Sign in button

39 WebElement SigninButton = driver.findElement(By.id("signin"));
40 SigninButton.click();

41

42 /I close the web browser

43 driver.close();

44}

45}

Code Explanation with respect to TestNG
1) @Test — @Test is one of the TestNG annotations. This annotation lets the program execution to know that
method annotated as @Test is a test method. To be able to use different TestNG annotations, we need to import

the package “import org.testng.annotations.*”.

2) There is no need of main() method while creating test scripts using TestNG. The program execution is done
on the basis of annotations.

3) In a statement, we used Assert class while comparing expected and the actual value. Assert class is used to
perform various verifications. To be able to use different assertions, we are required to import

“import org.testng. Assert”.
Executing the TestNG script

The TestNG test script can be executed in the following way:

=> Right click anywhere inside the class within the editor or the java class within the package explorer, select
“Run As” option and click on the “TestNG Test”.

123

Open With > lestnG {

> ‘ Open Type Hierarchy F4 r driver = new FirefoxDr
JRE System l.vbufy: Show In Alte Shifte W » https://accounts.googl
TestNG .

Referenced Librari 12 COPY CerleC
nework 4 Copy Qualified Name yTitle() {

: - Q he firefox browser and o
e 4 = Puste CuleV "https://geail.com™);
mium(WebDriver)] 3 Delete Delete
DriverDemol the browser window

Build Path » bge().window().maximize()
- e 1 S and initislize the varia
Refactor Alt+Shift+T» lactedTitle = " Sign in -
e title of the web page
g3 Import... alTitle = driver.getTitl
Export... rtEquals(expectedTitle,a
- valid ysername in the ;a
References » | username « driver.findEl
; lear();
Declarations ¥ lendKeys(“TestSelenium™);
<» Refresh FS valid password in the pa
Assign Working Sets... password = driver.findEl
lear();
Debug As » [endKeys("passwordl23™);
| Runas » I 1 TestNG Test]

TestNG result is displayed into two windows:
o Console Window
e TestNG Result Window
Refer the below screencasts for the result windows:

‘v .
l:!!!iii!ﬁall[7Rznluefnmnhgch&sbenoTeﬂNG
DemoTestNG [TestNG] C:\Program Files\Java\jre6\bin\javaw.exe (02-Jun-2014 1:04:00 am)
PASSED: google

Default test
Tests run: 1, Failures: ©, Skips: ©

fault suite
otal tests run: 1, Failures: @, Skips: @

[TestNG] Time taken by org.testng.reporters.XMLReporter@509df6fl: 14 ms
[TestNG] Time taken by org.testng.reporters.JlUnitReportReporter@2d342bad: 4 1
[TestNG] Time taken by org.testng.reporters.EmailableReporter2@dedle89e: 5 m:
[TestNG] Time taken by org.testng.reporters.jq.Main@26ee7ald: 60 ms

[TestNG] Time taken by org.testng.reporters.SuiteHTMLReporter@2@b9b538: 30 m:
[TestNG] Time taken by [FailedReporter passed=@ failed«® skipped=@]: @ ms

(Click on image to view enlarged)

124

2 Console] i Results of running class DemoTestNG 52
Tests: 171 Methods: 1 (35216 ms) -

Search: U Passed:1 O Failed:0 B prpe\tl)l
£ All Tests | 7 Failed Tests| Summary
Tests

Test name Time (seconds) Class count Method count

Default test 6584 1 1
Excluded methods

Class name Method name Description

HTML Reports

TestNG comes with a great capability of generating user readable and comprehensible HTML reports for the

test executions. These reports can be viewed in any of the browser and it can also be viewed using Eclipse’s

build —in browser support.

To generate the HTML report, follow the below steps:

Step 1: Execute the newly created TestNG class. Refresh the project containing the TestNG class by right

clicking on it and selecting “Refresh” option.

Step 2: A folder named as “test-output” shall be generated in the project at the “src” folder level. Expand the

“test-output” folder and open on the “emailable-report.html” file with the Eclipse browser. The HTML file

displays the result of the recent execution.
b 53 src

» =% JRE System Library [JavaSE-1.6]

b = TestNG
i~ =\, Referenced Libraries
4 (= test-output

= Def

> = junitreports
» & old
b (= WebDriverSession
&) bullet_point.png
—bcollapcaall gif
'@ emailable-report.html|
f——igdi~fritedtprry
& index.html
jquery-1.7.1.min.js
&) navigator-bullet.png
&)) passed.png
E_L_] skipped.png
[testng-failed.xml
4¥ testng-reports.css
[ZB] testng-reports.js
[5] testng-results.xml
i | testng.css

125

4 (> test-output

Erwew o s—ry Fo-Ns-

e

bge (). timeouts(). implicis

. &> Defauk suite Open F3 “http://www.weblink.in/'
(> junitreports Open With M9 Web Browser
& old Show In Alte Shift+ W » -
(2> WebDriverSession ot Edotoci 3
@) bullet_point.png i@ Copy Ctri-C System Editor -3
[i 4 Copy Qualified Name In-Place Editor
@ emailable-reporthtn] = Paste CtrlsV Default Editor o

s ‘ Delete Delete

& indexhtml | Other...
[B)] iquery-1.7.1.minjs Build Path » ; .
g awvigitor-bullet.ong SEEE ST println(driver.getTitle:
%P"“-P'@ . == ndElement(By.linkText(™;
&) skipped.png t= Import..
) testng-failed.xml +A Fynan.

|J] DemoTestNG java (4] SettingPrionity java |4] DemoTestNG java

Step 3: The HTML report shall be opened with in the eclipse environment. Refer the below image for the same.
@ TestNG Repont 13

B 5 file///H/WebDriver/Selenium({WebDriver) Training/test- output/emailable-report.htmil

Test | #Passed | # Skipped | # Failed | Time (ms) | Included Groups | Excluded

Default suite

Default test | 1] 0| o] 55060 |

l

Class | Method | Start
Default suite
Default test — passed

Default test

] Time (ms)

advanced.day3.DemoTestNG#google

Dack 10 summary

Refresh the page to see the results for fresh executions if any.

Setting Priority in TestNG

Code Snippet

1 package TestNG;

2 import org.testng.annotations.*;
3 public class SettingPriority {

4

5 @Test(priority=0)

6 public void method1() {

7}

8

9 @Test(priority=1)

10 public void method2() {
11 }

12

13 @Test(priority=2)

14 public void method3() {

15 }

126

16}
Code Walkthrough

If a test script is composed of more than one test method, the execution priority and sequence can be set using

TestNG annotation “@Test” and by setting a value for the “priority” parameter.

In the above code snippet, all the methods are annotated with the help @Test and the priorities are set to 0, 1
and 2. Thus the order of execution in which the test methods would be executed is:

e Methodl
e Method2
e Method3

Support for Annotations
There are number of annotations provided in TestNG and JUnit. The subtle difference is that TestNG provides
some more advance annotations to JUnit.

TestNG Annotations:

Following is the list of the most useful and favorable annotations in TestNG:
Annotation Description
@Test The annotation notifies the system that the method

annotated as @Test is a test method

@BeforeSuite The annotation notifies the system that the method
annotated as @BeforeSuite must be executed
before executing the tests in the entire suite

@AfterSuite The annotation notifies the system that the method
annotated as @AfterSuite must be executed after
executing the tests in the entire suite

@BeforeTest The annotation notifies the system that the method
annotated as @BeforeTest must be executed
before executing any test method within the same
test class

@AfterTest The annotation notifies the system that the method
annotated as @AfterTest must be executed after
executing any test method within the same test
class

@BeforeClass The annotation notifies the system that the method
annotated as @BeforeClass must be executed
before executing the first test method within the
same test class

127

Note: Many of the aforementioned annotations can be exercised in JUnit 3 and JUnit 4 framework also.
Conclusion

Annotation

@ATfterClass

@BeforeMethod

@ATfterMethod

@BeforeGroups

@AfterGroups

Description

The annotation notifies the system that the method
annotated as @AfterClass must be executed after
executing the last test method within the same test
class

The annotation notifies the system that the method
annotated as @BeforeMethod must be executed
before executing any and every test method within
the same test class

The annotation notifies the system that the method
annotated as @AfterMethod must be executed
after executing any and every test method within
the same test class

The annotation notifies the system that the method
annotated as @BeforeGroups is a configuration
method that enlists a group and that must be
executed before executing the first test method of
the group

The annotation notifies the system that the method
annotated as @ATfterGroups is a configuration
method that enlists a group and that must be
executed after executing the last test method of the

group

Through this tutorial, we tried to make you acquainted with a java based testing framework named as TestNG.

We started off the session with the installation of the framework and moved with the script creation and

advance topics. We discussed all the annotations provided by TestNG. We implemented and executed our first
TestNG test script using annotations and assert statements.

Article summary:
TestNG is an advance framework designed in a way to leverage the benefits by both the developers and

readily available for download.

TestNG is considered to be superior to JUnit because of its advance features.
Features of TestNG
Support for Annotations
Advance execution methodology that do not require test suites to be created

TestNG is an open source framework which is distributed under the Apache software License and is

128

e Support for parameterization

e Support for Data Driven Testing using Dataproviders

o Setting execution priorities for the test methods

o Supports threat safe environment when executing multiple threads

o Readily supports integration with various tools and plug-ins like build tools (Ant, Maven etc.),
Integrated Development Environment (Eclipse).

o Facilitates user with effective means of Report Generation using ReportNG

Advantages of TestNG over JUnit

o Added advance and easy annotations

« Execution patterns can be set

« Concurrent execution of test scripts

o Test case dependencies can be set

TestNG is freely available and can be easily installed in the Eclipse IDE using Eclipse Market.

Upon installation, TestNG would be available as a library within the Eclipse environment.

Create a new Java Project and configure the build path using TestNG library.

Create a new TestNG class by expanding the created TestNG project and traverse to its “src” folder.

Right click on the “src¢” package and navigate to New -> Other. Select TestNG class option.

@Test is one of the annotations provided by TestNG. This annotation lets the program execution to

know that method annotated as @Test is a test method. To be able to use different TestNG annotations,

we need to import the package “import org.testng.annotations.*”.

There is no need of main() method while creating test scripts using TestNG.

We use Assert class while comparing expected and the actual value. Assert class is used to perform

various verifications. To be able to use different assertions, we are required to import

“import org.testng. Assert”.

If a test script is composed of more than one test methods, the execution priority and sequence can be set

using TestNG annotation “@Test” and by setting a value for the “priority” parameter.

TestNG has a capability of generating human readable test execution reports automatically. These

reports can be viewed in any of the browser and it can also be viewed using Eclipse’s built — in browser

support.

Next Tutorial #13: Moving ahead with the upcoming tutorials in the Selenium series, we would concentrate on

handling the various types of web elements available on the web pages. Therefore, in the next tutorial, we

would concentrate our focus on “dropdowns” and will exercise their handling strategies. \We would also
discuss about WebDriver’s Select class and its methods to select values in the dropdowns.

A remark for the readers: While our next tutorial of the Selenium series is in the processing mode, readers can
start creating their own basic WebDriver scripts using TestNG framework.

For more advance scripts and concepts, include as many annotations and assertions in your TestNG classes and
execute them using TestNG environment. Also analyze the HTML reports generated by TestNG.

129

http://www.softwaretestinghelp.com/selenium-select-class-selenium-tutorial-13/

Tutorial #13 — Handling Drop-downs

Usage of Selenium Select Class for Handling Dropdown Elements on a Web
Page — Selenium Tutorial #13

In the previous tutorial, we studied about the various types of assert statements available in Java based unit
testing framework and their applications with specimens. Re-iterating the fact that being an “Automation Test

Engineer”, assertions play a very decisive and significant role in developing test scripts.

Moving ahead with the few upcoming tutorials in the Selenium series, we would concentrate on handling the
various types of web elements available on the web pages. Therefore, in this tutorial, we would

consider “dropdowns” and exercise their handling strategies.

Before moving towards problem statement and its resolution, let us take a moment to introduce and create an
understanding regarding the application under test. As a sample, we have created a dummy HTML

page consisting of multiple and assorted web elements.

The elementary web elements those constitute the web page are:

e Hyperlink
o Button
e Dropdown

Please take a reference of the following webpage aforementioned above:

= file///F/ Work/Blogs/testingstuff/DemoWebAlert.html

* Google

® abodeQA
Red ~ Apple ~ Select ~
Click the button to display a confirm box
[Tyt

Hyperlinks Button Dropdowns with

the selected default

value

Explanation of Application under Test

130

We have designed the web page in a way to include a few fundamental types of web elements.

e Hyperlink: The two hyperlinks namely “Google” and “abodeQA” have been provided that re-directs the

user to “https://www.google.co.in/” and “http://www.abodeqa.com/” respectively on the click event.

o Dropdown: The three dropdowns have been created for selecting colors, fruits and animals with a value

already set to default.

o Button: A “try it” button has been created to show up the pop up box having Ok and Cancel button upon

click event.

Subsequent is the HTML code used to create the above mentioned webpage:

1 <IDOCTYPE html>

2 <html>

3 <head><title> Testing Select Class </title>

4 <body>

5 <div id="header">

6 <ul id="linkTabs">

7

8 Google
9 «/li>

10

11 abodeQA

12

13

14 </div>

15 <div class="header_spacer"></div>

16 <div id="container">

17 <div id="content" style="padding-left: 185px;">
18 <table id="selectTable">

19 <tbody>

20 <tr>

21 <td>

22 <div>

23 <select id="SelectID_One">

24 <option value="redvalue">Red</option>

25 <option value="greenvalue">Green</option>
26 <option value="yellowvalue">Yellow</option>
27 <option value="greyvalue">Grey</option>
28 </select>

29 </div>

30 </td>

31 <td>

32 <div>

33 <select id="SelectID_Two">

34 <option value="applevalue">Apple</option>

131

35 <option value="orangevalue">Orange</option>

<option value="mangovalue">Mango</option

36>

37 <option value="limevalue">Lime</option>

38 </select>

39 </div>

40 </td>

41 <td>

42 <div>

43 <select id="SelectID_Three">

44 <option value="selectValue">Select</option>
45 <option value="elephantvalue">Elephant</option>
46 <option value="mousevalue">Mouse</option>
47 <option value="dogvalue">Dog</option>

48 </select>

49 </div>

50 </td>

51 </ftr>

52 <tr>

53 <td>

54 <IDOCTYPE html>

55 <html>

56 <body>

57 <p>Click the button to display a confirm box.</p>
58 <button onclick="myFunction()">Try it</button>
59 <script>

60 function myFunction()

61 {

62 confirm("Press a button!");

63 }

64 </script>

65 </body>

66 </html>

67 </td>

68 </tr>

69 </tbody>

70 </table>

71 </div>

72 </div>

73 </body>

74 </html>

Scenario to be automated

e Launch the web browser and open the webpage

e Click on the “Google” hyperlink
« Navigate back to the original web page

132

o Select the “Green” in color dropdown
e Select the “Orange” in the fruit dropdown

o Select the “Elephant” in the animal dropdown

WebDriver Code using Selenium Select Class

Please take a note that, for script creation, we would be using “Learning Selenium” project created in the

former tutorial.

Step 1: Create a new java class named as “HandlingDropDown” under the “Learning_Selenium” project.
Step 2: Copy and paste the below code in the “HandlingDropDown.java” class.
Below is the test script that is equivalent to the above mentioned scenario:

1 import static org.junit. Assert.*;

2 import org.junit.After;

3 import org.junit.Before;

4 import org.junit. Test;

5 import org.openga.selenium.By;

6 import org.openga.selenium.WebDriver;

7 import org.openga.selenium.firefox.FirefoxDriver;
8 import org.openga.selenium.support.ui.Select;
9

10 [**

11 * class description

12 %/

13

14 public class HandlingDropDown {

15 WebDriver driver;

16

17 [**

18 * Set up browser settings and open the application
19 */

20

21 @Before

22 public void setUp() {

23 driver=new FirefoxDriver();

24

25 [/ Opened the application

26 driver.get(“file:///F:/Work/Blogs/testingstuff/DemoWebAlert.html");
27 driver.manage().window().maximize();

28 }

29

30 [**

31 * Test to select the dropdown values

32 * @throws InterruptedException

33 */

133

34

35 @Test
36 public void testSelectFunctionality() throwsInterruptedException {
37
38 /I Go to google
39 driver.findElement(By.linkText("Google™)).click();
40
/I navigate back to previous
webpage
42 driver.navigate().back();
43 Thread.sleep(5000);
44
45 [/ select the first operator using "select by value"
46 Select selectByValue = newSelect(driver.findElement(By.id("SelectID_One")));
47 selectByValue.selectByValue("greenvalue");
48 Thread.sleep(5000);
49
50 // select the second dropdown using "select by visible text"
51 Select selectByVisibleText = new Select (driver.findElement(By.id("SelectID_Two")));
52 selectByVisibleText.selectByVisibleText("Lime");
53 Thread.sleep(5000);
54
55 // select the third dropdown using "select by index"
56 Select selectBylndex = newSelect(driver.findElement(By.id("SelectID_Three")));
57 selectByIndex.selectBylIndex(2);
58 Thread.sleep(5000);
59}
60
61 [**
62 * Tear down the setup after test completes
63 */
64
65 @After
66 public void tearDown() {
67 driver.quit();
68 }
69 }
Code Walkthrough

Import Statements
e import org.openga.selenium.support.ui.Select — Import this package prior to the script creation. The
package references to the Select class which is required to handle the dropdown.
Object Instantiation for Select class
Select selectByValue = new Select(driver.findElement(By.id(“SelectID One”)));

134

We create a reference variable for Select class and instantiate it using Select class and the identifier for the drop
down.

The identifier or the locator value for the drop down can be found using the techniques discussed in the initial
tutorials (by using Selenium IDE and firebug).

Take a notice that the identifier for a dropdown can be found as below:
Step 1: Most or almost all the dropdowns elements are defined in the <Select> tag having multiple values
(values that can be set into the dropdown) that are defined under the <option> tags.

9| ¢ &= =] console | ML~ | cS5 Script DOM. Net Cookdes

¢ | Edit | select¥SelectiD One < div < td < tr < thody < table#selectTable < divecontent < div

= <div id="content™ style="padding-left: 185px;">

= <table id="selectTable">
= <tbody>
= <ez>
= <td>
= i
Bl <select ide"SelectID One™>
<option valuem"redvalue®>Red</cption>

<option values"greenvalue">Green</option®
<cption values"yellowvalue">Yellow</cption>
<epticn values"greyvalue">Grey</cption>

</select>
</div>

Setting the value in the dropdown using selectByValue() method

selectByValue.selectByValue(“‘greenvalue ™),

In the above java command, we select the value “green” in the drop down using the selectByValue() method and
parameterizing it with the text present in the value attribute.

B <select id="SelectID One">

<option value="redvalue”>Red</cption>
<option[vatuesHERRRIEIN] o ..o, </ opion>

Setting the value in the dropdown using selectByVisibleText() method

selectByValue.selectByVisibleText(“Lime”),

In the above java command, we select the value “Lime” in the drop down using

the selectByVisibleText() method and parameterizing it with the text present on the user interface or the text

present between the opening and closing <option> tags.

= <select ide"SelectID Two">

<option values"applevalue">Apple</cption>
<option values"orangevalue">Orange</option>

<goption valuem"mangovalue">Mango</option>

<option ‘ulue-"l;:uevalue"/opbion>
Setting the value in the dropdown using selectByIndex() method
selectByValue.selectByIndex(*“2"”);

135

In the above java command, we select the third value in the drop down using the selectByIndex() method and
parameterizing it with the index value of the element which is desired to be selected in the dropdown.

Take a note that the index value starts with “0”.

Conclusion

In this tutorial, we tried to make you acquainted with the WebDriver’s Select class that is used to handle
dropdown elements present on the web page. We also briefed you about the methods that can be used to
populate the value in the dropdown.

Here is the article summary:

WebDriver’s Select class is used to handle the dropdown elements present on a web page.

Prior to the actual scripting, we need to import a package to be able to create a WebDriver script for
handling a dropdown and making the Select class accessible.

e import org.openga.selenium.support.ui.Select;

We create a reference variable for Select class and instantiate it using Select class and the identifier for
the drop down.

o Select selectByValue = new Select(driver.findElement(By.id(*SelectID One”)));

The identifier or the locator value for the drop can be found using Selenium IDE and firebug.

Ideally there are three ways to select the desired value in the dropdown amongst the listed one.

o selectByValue()

o selectByVisibleText()

o selectBylIndex()

The following java command is used to select the “green” color in the dropdown. Take a notice the
value in the dropdown is selected using the selectByValue()

o selectByValue(“greenvalue”);

The following java command is used to select the “Lime” fruit in the dropdown. Take a notice the value
in the dropdown is selected using the selectByVisibleText()

o selectByVisibleText(“Lime”);

The following java command is used to select the third value amongst all the available options enlisted
for the dropdown. Take a notice the value in the dropdown is selected using the selectByIndex()

o selectBylndex(“2”);

Next Tutorial #14: In the forthcoming tutorial, we would discuss about various types of commands in

WebDriver like isSelected(), isEnabled() and isDispalyed() those return a Boolean value against the presence of

a specified web element.
Till then, stay tuned and automate the dropdown using WebDriver utility — “Select class”.

136

http://www.softwaretestinghelp.com/webdriver-commands-selenium-tutorial-14/

Tutorial #14 — Looping and Conditional commands

Check Visibility of Web Elements Using Various Types WebDriver
Commands — Selenium Tutorial #14

How to check visibility of web elements using various types of looping and conditional commands in
WebDriver:
Previously in the series, we discussed about WebDriver’s Select class which is primarily used to handle web

elements like dropdowns and selecting various options under the dropdowns.
Moving ahead in the Selenium series, we would be discussing about the various types of looping and
conditional commands in WebDriver like isSelected(), isEnabled() and isDispalyed(). These methods are used

to determine the visibility scope for the web elements.

So let us start with a brief introduction — WebDriver has a W3C specification that details out the information
about the different visibility preferences based out on the types of the web elements upon which the actions are
to be performed.

WebDriver facilitates the user with the following methods to check the visibility of the web elements. These
web elements can be buttons, dropboxes, checkboxes, radio buttons, labels etc.

o isDisplayed()

o isSelected()

e isEnabled()
For an improved understanding, let us discuss the aforementioned methods with code examples.
As a specimen, we would be using the “google.com” as an application under test and the “Learning_Selenium”
project created in the previous tutorials for script generation.

Scenario to be automated
1. Launch the web browser and open the application under test — http://google.com

Verify the web page title

Verify if the “Google Search” button is displayed

Enter the keyword in the “Google Search” text box by which we would want to make the request
Verify that the “Search button” is displayed and enabled

6. Based on visibility of the Search button, click on the search button
WebDriver Code

Step 1: Create a new java class named as “VisibilityConditions” under the “Learning_Selenium” project.

o~ w

Step 2: Copy and paste the below code in the “VisibilityConditions.java” class.
Below is the test script that is equivalent to the above mentioned scenario:

137

http://www.softwaretestinghelp.com/selenium-select-class-selenium-tutorial-13/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

1 import org.openga.selenium.By;
2 import org.openga.selenium.WebDriver;

3 import org.openga.selenium.WebElement;
4 import org.openga.selenium.firefox.FirefoxDriver;

5

6 public class VisibilityConditions {

.
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

* @param args

public static void main(String[] args) {

/I objects and variables instantiation

WebDriver driver = new FirefoxDriver();
String appUrl = "https://google.com";

/I launch the firefox browser and open the application url
driver.get(appUrl);

I/ maximize the browser window
driver.manage().window().maximize();

/I declare and initialize the variable to store the expected title of the webpage.
String expectedTitle = "Google";

I/ fetch the title of the web page and save it into a string variable
String actual Title = driver.getTitle();

/I compare the expected title of the page with the actual title of the page and print the result
if (expectedTitle.equals(actualTitle))

{
System.out.printin("Verification Successful - The correct title is displayed on the web page.");
}
else
{
System.out.printin("Verification Failed - An incorrect title is displayed on the web page.");
¥

// verify if the “Google Search” button is displayed and print the result

booleansubmitbuttonPresence=driver.findElement(By.id("gbgfba™)).isDisplayed();
System.out.printIn(submitbuttonPresence);

// enter the keyword in the “Google Search” text box by which we would want to make the request

WebElement searchTextBox = driver.findElement(By.id("gbqfq™));
138

46 searchTextBox.clear();

47 searchTextBox.sendKeys("Selenium™);

48

49 // verify that the “Search button” is displayed and enabled

50 boolean searchlconPresence = driver.findElement(By.id("ghqfb™)).isDisplayed();
51 boolean searchlconEnabled = driver.findElement(By.id("gbgfb™)).isEnabled();
52

53 if (searchlconPresence==true && searchlconEnabled==true)

54 {

55 // click on the search button

56 WebElement searchlcon = driver.findElement(By.id("ghqfb"));
57 searchlcon.click();

58 }

59

60 /I close the web browser

61 driver.close();

62 System.out.printin("Test script executed successfully.™);

63

64 /I terminate the program

65 System.exit(0);

66 }

67 }

Code Walkthrough

Following are the ways in which we ascertain the presence of web elements on the web page.

boolean submitbuttonPresence=driver.findElement(By.id(““gbqfba”)).isDisplayed();
isDispalyed()

isDisplayed() is the method used to verify presence of a web element within the webpage. The method is
designed to result a Boolean value with each success and failure. The method returns a “true” value if the
specified web element is present on the web page and a “false” value if the web element is not present on the
web page.

Thus the above code snippet verifies for the presence of submit button on the google web page and returns a
true value if the submit button is present and visible else returns a false value if the submit button is not present
on the web page.

boolean searchlconEnabled = driver.findElement(By.id(“gbqfb”)).isEnabled();
The method deals with the visibility of all kinds of web elements not just limiting to any one type.

isEnabled()

139

isEnabled() is the method used to verify if the web element is enabled or disabled within the webpage. Like
isDisplayed() method, it is designed to result a Boolean value with each success and failure. The method returns
a “true” value if the specified web element is enabled on the web page and a “false” value if the web element is

not enabled (state of being disabled) on the web page.

Thus the above code snippet verifies if the submit button is enabled or not and returns a Boolean value
depending on the result.

The isEnabled() method is significant in scenarios where we want to ascertain that only if “Condition A” is
fulfilled, then the element(principally button) is enabled. Refer the following illustration for the same.

[Forum Riles
| In order 0 proceed, you must agree with the folloning rules:

I»

Forum Rules

Registration 0 this forum g free’ We S0 st that you abide by the rules and policies detaded below. &f
you agree o the terms, please check the ‘I apree’ checkbox and press the ‘Repister’ buttcn below. If
you would ke to cancel the registrabion, chick hare to return to the forums ndex,

ARhough the administrators and moderators of Forums will attempt 1o keep all chjecticnable messages
off thus forum, 2 13 Mmpossible for us 10 revienw oll messages. All messages express the vieas of the
author, and nether the oaners of Forums, nor Jelsoft Bnterprices Ltd. (developers of vBulletin) will be
held responsible for the content of any message.

U'Q!l‘g 10 thece rules, you aarrant that you will not post any messages that are cbecens vui;l‘ -'_I
L ol mscmtad hatald shocctanins me atbhosscns cimlash o of aais lawa

| ¥ 1 §ave read, and agree to abide by the Forums rules.

_p—

(=3

In the above figure, Register button button is enabled only when the agreement checkbox is selected.

Akin to above methods, we have a method referenced as “isSelected()”” which tests if the specified web element
is selected or not.

boolean searchlconSelected = driver.findElement(By.id(“male”)).isSelected(),
isSelected()

isSelected() is the method used to verify if the web element is selected or not. isSelected() method is pre-
dominantly used with radio buttons, dropdowns and checkboxes. Analogous to above methods, it is designed to

result a Boolean value with each success and failure.

Thus the above code snippet verifies if the male radio button is selected or not and returns a Boolean value
depending on the result. Refer the following image for the same.

Conclusion

140

In this tutorial, we tried to make you acquainted with the WebDriver’s looping and conditional operations.
These conditional methods often deal with almost all types of visibility options for web elements.

Article Summary:

o WebDriver has a W3C specification that details out the information about the different visibility
preferences based out on the types of the web elements.

« isDisplayed() is the method used to verify presence of a web element within the webpage. The method
returns a “true” value if the specified web element is present on the web page and a “false” value if the
web element is not present on the web page.

o isDisplayed() is capable to check for the presence of all kinds of web elements available.

« isEnabled() is the method used to verify if the web element is enabled or disabled within the webpage.

o isEnabled() is primarily used with buttons.

o isSelected() is the method used to verify if the web element is selected or not. isSelected() method is
pre-dominantly used with radio buttons, dropdowns and checkboxes.

Next Tutorial #15: While working on web applications, often we are re-directed to different web pages by
refreshing the entire web page and re-loading the new web elements. At times there can be Ajax calls as well.
Thus, a time lag can be seen while reloading the web pages and reflecting the web elements. Thus, our next

tutorial in-line is all about dealing with such time lags by using implicit and explicit waits.
Note for the Readers: Till then, the reader can automate and test the visibility scope for the web elements using
WebDriver’s methods.

141

http://www.softwaretestinghelp.com/selenium-webdriver-waits-selenium-tutorial-15/

Tutorial #15 — Explicit and Implicit Waits

Practical Use of Different types of Selenium WebDriver Waits — Selenium
Tutorial #15

In the previous tutorial, we tried to make you acquainted with the various WebDriver’s looping and conditional
operations. These conditional methods often deal with almost all types of visibility options for web elements.
Moving ahead in this free Selenium training series, we will discuss about different types of waits provided by
the WebDriver. We will also discuss about various types of navigation options available in WebDriver.
Waits help the user to troubleshoot issues while re-directing to different web pages by refreshing the entire web
page and re-loading the new web elements. At times there can be Ajax calls as well. Thus, a time lag can be
seen while reloading the web pages and reflecting the web elements.

Users are often found navigating through various web pages back and forth. Thus, navigate()
commands/methods provided by the WebDriver helps the user to simulate the real time scenarios by navigating

between the web pages with reference to the web browser’s history.

WebDriver equips the user with two genesis of waits in order to handle the recurring page loads, web
element loads, appearance of windows, pop ups and error messages and reflection of web elements on the web
page.

o Implicit Wait

o Explicit Wait
Let us discuss each of them in details considering practical approach.

WebDriver Implicit Wait

Implicit waits are used to provide a default waiting time (say 30 seconds) between each consecutive test
step/command across the entire test script. Thus, subsequent test step would only execute when the 30 seconds
have elapsed after executing the previous test step/command.

Key Notes
« Implicit wait is a single line of a code and can be declared in the setup method of the test script.
e When compared to Explicit wait, Implicit wait is transparent and uncomplicated. The syntax and
approach is simpler than explicit wait.
Being easy and simple to apply, implicit wait introduces a few drawbacks as well. It gives rise to the test script
execution time as each of the command would be ceased to wait for a stipulated amount of time before
resuming the execution.

142

http://www.softwaretestinghelp.com/webdriver-commands-selenium-tutorial-14/
http://www.softwaretestinghelp.com/webdriver-commands-selenium-tutorial-14/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Thus, in order to trouble shoot this issue, WebDriver introduces Explicit waits where we can explicitly apply
waits whenever the situation arises instead of forcefully waiting while executing each of the test step.

Import Statements

import java.util.concurrent. TimeUnit — To be able to access and apply implicit wait in our test scripts, we are
bound to import this package into our test script.

Syntax

drv.manage().timeouts().implicitlyWait(10, TimeUnit. SECONDS);

Include the above line of code into your test script soon after instantiation of WebDriver instance variable.
Thus, this is all what is required to set an implicit wait into your test script.

Code Walkthrough

The implicit wait mandates to pass two values as parameters. The first argument indicates the time in the
numeric digits that the system needs to wait. The second argument indicates the time measurement scale. Thus,
in the above code, we have mentioned the “30” seconds as default wait time and the time unit has been set to

“seconds”.

WebDriver Explicit Wait
Explicit waits are used to halt the execution till the time a particular condition is met or the maximum time has
elapsed. Unlike Implicit waits, Explicit waits are applied for a particular instance only.

WebDriver introduces classes like WebDriverWait and ExpectedConditions to enforce Explicit waits into the

test scripts. In the ambit of this discussion, we will use “gmail.com” as a specimen.

Scenario to be automated
1. Launch the web browser and open the “gmail.com”
2. Enter a valid username
3. Enter a valid password
4. Click on the sign in button
5. Wait for Compose button to be visible after page load
WebDriver Code using Explicit wait
Please take a note that for script creation, we would be using “Learning_Selenium” project created in the former
tutorials.

Step 1: Create a new java class named as “Wait_Demonstration” under the “Learning_Selenium” project.
Step 2: Copy and paste the below code in the “Wait_Demonstration.java” class.
Below is the test script that is equivalent to the above mentioned scenario.

143

1 import static org.junit. Assert.*;

2 import java.util.concurrent. TimeUnit;

3 import org.junit. After;

4 import org.junit.Before;

5 import org.junit.Test;

6 import org.openga.selenium.By;

7 import org.openga.selenium.WebDriver;

8 import org.openga.selenium.WebElement;

9 import org.openga.selenium.firefox.FirefoxDriver;

10 import org.openga.selenium.support.ui.ExpectedConditions;
11 import org.openga.selenium.support.ui.WebDriverWait;
12

13 public class Wait_Demonstration {

14

15 /I created reference variable for WebDriver

16 WebDriver drv;

17 @Before

18 public void setup() throws InterruptedException {

19

20 /l initializing drv variable using FirefoxDriver

21 drv=new FirefoxDriver();

22 / launching gmail.com on the browser

23 drv.get("https://gmail.com");

24 /I maximized the browser window

25 drv.manage().window().maximize();

26 drv.manage().timeouts().implicitlyWait(10, TimeUnit. SECONDS);
27}

28

29 @Test

30 public void test() throws InterruptedException {

31

32 /I saving the GUI element reference into a "username™ variable of WebElement type
33 WebElement username = drv.findElement(By.id("Email™));

34

35 /I entering username

36 username.sendKeys("shruti.shrivastava.in");

37

38 /I entering password

39 drv.findElement(By.id("Passwd")).sendKeys("password");

40

41 I/ clicking signin button

42 drv.findElement(By.id("signin")).click();

43

44 /I explicit wait - to wait for the compose button to be click-able
45 WebDriverWait wait = newWebDriverWait(drv,30);

144

46
47 wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath("//div[contains(text(), COMPOSE')]")));

48 /I click on the compose button as soon as the “compose" button is visible
49 drv.findElement(By.xpath("//div[contains(text(), COMPOSE"]")).click();

50 }

51

52 @After

53 public void teardown() {
54 // closes all the browser windows opened by web driver

55 drv.quit();
56}
57}
Import Statements
« import org.openga.selenium.support.ui.ExpectedConditions
« import org.openga.selenium.support.ui.WebDriverWait
« Import above packages prior to the script creation. The packages refer to the Select class which is
required to handle the dropdown.
Object Instantiation for WebDriverWait class
WebDriverWait wait = new WebDriverWait(drv,30);
We create a reference variable “wait” for WebDriverWait class and instantiate it using WebDriver instance and
maximum wait time for the execution to layoff. The maximum wait time quoted is measured in “seconds”.

The WebDriver instantiation was discussed in the initial tutorials of WebDriver.

Expected Condition
wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath("//div[contains(text(), COMPOSE")]™)));
drv.findElement(By.xpath("//div[contains(text(), COMPOSE")]")).click();

The above command waits for a stipulated amount of time or an expected condition to occur whichever occurs
or elapses first.

Thus to be able to do this, we use the “wait” reference variable of WebDriverWait class created in the previous
step with ExpectedConditions class and an actual condition which is expected to occur. Therefore, as soon as
the expected condition occurs, the program control would move to the next execution step instead of forcefully
waiting for the entire 30 seconds.

In our specimen, we wait for the “compose” button to be present and loaded as a part of home page load and

thus, then we move forward with calling the click command on the “compose” button.

Types of Expected Conditions

145

ExpectedConditions class provides a great help to deal with scenarios where we have to ascertain for a
condition to occur before executing the actual test step.

ExpectedConditions class comes with a wide range of expected conditions that can be accessed with the help of
the WebDriverWait reference variable and until() method.

Let us discuss a few of them at length:
#1) elementToBeClickable() — The expected condition waits for an element to be clickable i.e. it should be

present/displayed/visible on the screen as well as enabled.

Sample Code

wait.until(ExpectedConditions.elementToBeClickable(By.xpath(*"//div[contains(text(), COMPOSE’)]),
#2) textToBePresentInElement() — The expected condition waits for an element having a certain string
pattern.

Sample Code

wait.until(ExpectedConditions.textToBePresentInElement(By.xpath(*//div[@id= ‘forgotPass'”), “text to be
found”));

#3) alertlsPresent()- The expected condition waits for an alert box to appear.

Sample Code

wait.until(ExpectedConditions.alertlsPresent()) !=null);

#4) titlels() — The expected condition waits for a page with a specific title.

Sample Code

wait.until(ExpectedConditions.titlels(“gmail ’));

#5) frameToBeAvailableAndSwitchTolt() — The expected condition waits for a frame to be available and then
as soon as the frame is available, the control switches to it automatically.

Sample Code

wait.until(ExpectedConditions.frameToBeAvailableAndSwitchTolt(By.id(“newframe”)));
Navigation Using WebDriver

There is a very common user action where the user clicks on the back and forward buttons of the web browser
back n forth to navigate to the different web pages visited in the current session on the browser’s history. Thus
to simulate such actions performed by the users, WebDriver introduces Navigate commands.

Let us examine these commands in detail:
#1) navigate().back()
This command lets the user to navigate to the previous web page.

Sample code:
driver.navigate().back();

146

The above command requires no parameters and takes back the user to the previous webpage in the web

browser’s history.
#2) navigate().forward()

This command lets the user to navigate to the next web page with reference to the browser’s history.
Sample code:
driver.navigate().forward();

The above command requires no parameters and takes forward the user to the next webpage in the web

browser’s history.

#3) navigate().refresh()

This command lets the user to refresh the current web page there by reloading all the web elements.
Sample code:

driver.navigate().refresh();

The above command requires no parameters and reloads the web page.
#4) navigate().to()
This command lets the user to launch a new web browser window and navigate to the specified URL.

Sample code:

driver.navigate().to(“http://google.com”);

The above command requires a web URL as a parameter and then it opens the specified URL on a freshly

launched web browser.
Conclusion

In this tutorial, we tried to make you acquainted with the WebDriver’s waits. We discussed and exercised both

the explicit and the implicit waits. At the same time, we also discussed about the different navigate commands.

Here are the cruxes of this article:

WebDriver enables the user to choose amongst the available waits to handle situations where the
execution flow may require a sleep for few seconds in order to load the web elements or to meet a
specific condition. There are two types of waits available in WebDriver.

o Implicit Wait

o Explicit Wait

Implicit waits are used to provide a default waiting time between each consecutive test step/command
across the entire test script. Thus, subsequent test step would only execute when the specified amount of
time have elapsed after executing the previous test step/command.

Explicit waits are used to halt the execution till the time a particular condition is met or the maximum
time has elapsed. Unlike Implicit waits, Explicit waits are applied for a particular instance only.
WebDriver introduces classes like WebDriverWait and ExpectedConditions to enforce Explicit waits
ExpectedConditions class provides a great help to deal with scenarios where we have to ascertain for a
condition to occur before executing the actual test step.

147

o ExpectedConditions class comes with a wide range of expected conditions that can be accessed with the
help of the WebDriverWait reference variable and until() method.
« Navigate() methods/commands are used to simulate the user behavior while navigating between various
web pages back and forth.
Next Tutorial #16: Coming on to the next tutorial in the list, we would make the users familiar with various
types of alerts that may appear while accessing web sites and their handling approaches in WebDriver. The
types of alerts that we would be focusing on are majorly — windows based alert pop ups and web based alert pop
ups. As we know that handling windows based pop ups is beyond WebDriver’s capabilities, thus we would also
exercise some third party utilities to handle window pop ups.
Note for the Readers: Till then, the readers can automate the scenarios having various page loads and dynamic
elements popping up on to the screen using the various expected conditions and navigate commands.

148

http://www.softwaretestinghelp.com/handle-alerts-popups-selenium-webdriver-selenium-tutorial-16/

Tutorial #16 — Handling Alerts/popups

How to Handle Alerts/Popups in Selenium WebDriver — Selenium Tutorial
#16

Efficient Ways to Handle Windows and Web based Alerts/Popups in Selenium WebDriver:

In the previous tutorial, we focused our discussion on different types of waits provided by the WebDriver. We
also discussed about various types of navigation options available in WebDriver.

Moving ahead in the Selenium WebDriver Tutorials, we will discuss about different types of alerts available

while testing web applications and their handling strategies.

There are two types of alerts that we would be focusing on majorly:

1. Windows based alert pop ups

2. Web based alert pop ups
As we know that handling windows based pop ups is beyond WebDriver’s capabilities, thus we would exercise
some third party utilities to handle window pop ups.
Handling pop up is one of the most challenging piece of work to automate while testing web applications.
Owing to the diversity in types of pop ups complexes the situation even more.

What is Alert box/ Pop up box/ confirmation Box/ Prompt/ Authentication Box?
It is nothing but a small box that appears on the display screen to give you some kind of information or to warn
you about a potentially damaging operation or it may even ask you for the permissions for the operation.

Example: Let us consider a real life example for a better understanding; Let us assume that we uploaded a
photograph on any of these popular social networking sites. Later on, i wish to delete the uploaded photograph.
So in order to delete, i clicked on the delete button. As soon as | click on the delete button, the system warns me
against my action, prompting — Do you really want to delete the file? So now we have an option to either accept
this alert or reject it.

So ahead in the session, let’s see how do we reject or accept the alerts depending on their types. Starting

with the web based pop ups.
Web Based Popups

Press a button!

OK] [Cancel

149

http://www.softwaretestinghelp.com/selenium-webdriver-waits-selenium-tutorial-15/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Let us see how do we handle them using WebDriver.

Handling web based pop-up box
WebDriver offers the users with a very efficient way to handle these pop ups using Alert interface.

There are the four methods that we would be using along with the Alert interface.

1) void dismiss() — The dismiss() method clicks on the “Cancel” button as soon as the pop up window appears.
2) void accept() — The accept() method clicks on the “Ok” button as soon as the pop up window appears.

3) String getText() — The getText() method returns the text displayed on the alert box.

4) void sendKeys(String stringToSend) — The sendKeys() method enters the specified string pattern into the
alert box.

Let us move ahead and look at the actual implementation.

Explanation of Application under Test

We have designed a web page in a way to include a few fundamental types of web elements. This is the same
application we introduced while discussing Select class earlier in this series.

o Hyperlink: The two hyperlinks namely “Google” and “abodeQA” have been provided that re-directs the
user to “http://www.google.com/” and “http://www.abodeqa.com/” respectively on the click event.
« Dropdown: The three hyperlinks have been created for selecting colors, fruits and animals with a value
set to default.
o Button: A “try it” button has been created to show up the pop up box having OK and Cancel buttons
upon click event.
(Click on image to view enlarged)

CH file:///F./Work/Selenium/Testing-Presentation/DemoWebPopup.htm
For quick access, place your bookmarks here on the bookmarks bar. Import bookmarkd x
JavaScript
¢ Google
o abodeQ; Press a button!
Red v A I OK | | Cancel |

CEck the button to display a confirm box.

Tyt

Subsequent is the HTML code used to create the above mentioned webpage:
1 <IDOCTYPE html></pre>
2 <html>

3 <head><title> Testing Select Class </title>
4 <body>
5 <div id="header">

150

6 <ul id="linkTabs">

7

8 Google
9 </i>

10

11 abodeQA

12

13

14 </div>

15 <div class="header_spacer"></div>

16 <div id="container">

17 <div id="content" style="padding-left: 185px;">
18 <table id="selectTable">

19 <tbody>

20 <tr>

21 <td>

22 <div>

23 <select id="SelectID_One">

24 <option value="redvalue">Red</option>

25 <option value="greenvalue">Green</option>
26 <option value="yellowvalue">Yellow</option>
27 <option value="greyvalue">Grey</option>

28 </select>

29 </div>

30 </td>

31 <td>

32 <div>

33 <select id="SelectID_Two">

34 <option value="applevalue">Apple</option>
35 <option value="orangevalue">QOrange</option>

<option value="mangovalue">Mango</option

36>

37 <option value="limevalue">Lime</option>

38 </select>

39 </div>

40 </td>

41 <td>

42 <div>

43 <select id="SelectID_Three">

44 <option value="selectValue">Select</option>
45 <option value="elephantvalue">Elephant</option>
46 <option value="mousevalue">Mouse</option>
47 <option value="dogvalue">Dog</option>

48 </select>

49 </div>

151

50 </td>
51 <ftr>
52 <tr>

53 <td>
54

55 <IDOCTYPE htmi>

56 <html>

57 <body>

58 <p>Click the button to display a confirm box.</p>
59 <button onclick="myFunction()">Try it</button>
60

61 <script>

62 function myFunction()

63 {

64 confirm("Press a button!");

65 }

66 </script>

67 </body>

68 </html>

69 </td>
70 </tr>

71 </tbody>
72 </table>
73 </div>
74 <[div>
75 </body>
76 </html>

Scenario to be automated
1. Launch the web browser and open the webpage
2. Click on the “Try it” button
3. Accept the alert
4. Click on the “Try it” button again
5. Reject the alert
WebDriver Code using Select Class
Please take a note that for script creation, we would be using “Learning_Selenium” project created in the former
tutorial.

Step 1: Create a new java class named as “DemoWebAlert” under the “Learning_Selenium” project.
Step 2: Copy and paste the below code in the “DemoWebAlert.java” class.
Below is the test script that is equivalent to the above mentioned scenario.

1 import org.junit. After;
152

2 import org.junit.Before;

3 import org.junit.Test;
4 import org.openga.selenium.Alert;

5 import org.openga.selenium.By;
6 import org.openga.selenium.WebDriver;

7 import org.openga.selenium.firefox.FirefoxDriver;

8

9 /**

10 * class description

11 %/

12

13 public class DemoWebAlert

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45

WebDriver driver;

/**

* Constructor

*/

public DemoWebAlert() {
}

/**
* Set up browser settings and open the application
*/

@Before

public void setUp() {
driver=newFirefoxDriver();
/I Opened the application

driver.get("file:///F:/Work/Selenium/Testing-Presentation/DemoWebPopup.htm™);
driver.manage().window().maximize();

/**
* Test to check Select functionality

* @throws InterruptedException
*/

@Test

public void testWebAlert() throwslInterruptedException {
/I clicking on try it button

driver.findElement(By.xpath("'//button[contains(text(), Try it")]")).click();
Thread.sleep(5000);

/I accepting javascript alert
Alert alert = driver.switchTo().alert();

153

46 alert.accept();

47

48 /I clicking on try it button

49 driver.findElement(By.xpath("//button[contains(text(), Try it)]")).click();
50 Thread.sleep(5000);

51

52 /I accepting javascript alert

53 driver.switchTo().alert().dismiss();

54

55 Il clicking on try it button

56 driver.findElement(By.xpath("//button[contains(text(), Try it")]™)).click();
57 Thread.sleep(5000);

58

59 I accepting javascript alert

60 System.out.printIn(driver.switchTo().alert().getText());
61 driver.switchTo().alert().accept();

62 }

63

64 [**

65 * Tear down the setup after test completes

66 */

67

68 @After

69 public void tearDown() {

70 driver.quit();

71 }

72}

Code Walk-through

Import Statements

Import org.openga.selenium.Alert — Import this package prior to the script creation The package references to
the Alert class which is required to handle the web based alerts in WebDriver.

Object Creation for Alert class

Alert alert = driver.switchTo().alert();

We create a reference variable for Alert class and references it to the alert.

Switch to Alert

Driver.switchTo().alert();

The above command is used to switch the control to the recently generated pop up window.
Accept the Alert

alert.accept();

The above command accepts the alert thereby clicking on the Ok button.

154

Reject the Alert
alert.dismiss();

The above command closes the alert thereby clicking on the Cancel button and hence the operation should not

proceed.
Window Based Pop Ups

M Stay more organized with Gmail's inb... = | ,) Gmail - Stay more organized with Gm... X | #* Firebug

Print A
YA; Printer |
Name: |Mcrosoh XPS Document Witer v| | Propees.. |
C Status Ready
o Type: Microsoft XPS Document Witer
1| Whee xPSPot
Stay Comment: Prrt to fie
Gmail| oA Number of copies: 1
To:Tey Pages from: 1 to: 1 -
A i, 22| 3)3) e
|
OK Cancel |

At times while automating, we get some scenarios, where we need to handle pop ups generated by windows like
a print pop up or a browsing window while uploading a file.

Handling these pop-ups have always been a little tricky as we know Selenium is an automation testing tool
which supports only web application testing, that means, it doesn’t support windows based applications and
window alert is one of them. However Selenium alone can’t help the situation but along with some third party

intervention, this problem can be overcome.

There are several third party tools available for handling window based pop-ups along with the selenium.

So now let’s handle a window based pop up using Robot class.
Robot class is a java based utility which emulates the keyboard and mouse actions.

Before moving ahead, let us take a moment to have a look at the application under test (AUT).

Explanation of Application under Test

As an application under test, we would be using “gmail.com”. I believe the application doesn’t require any more
introductions.

155

Scenario to be automated

1. Launch the web browser and open the application — “gmail.com”
Enter valid username and password
Click on the sign in button
Click on the a compose button
Click on the attach icon

6. Select the files to be uploaded with the window based pop up.
WebDriver Code using Robot Class

o~ N

Please take a note that for script creation, we would be using “Learning_Selenium” project created in the former

tutorial.

Step 1: Create a new java class named as “DemoWindowAlert” under the “Learning_Selenium” project.
Step 2: Copy and paste the below code in the “DemoWindowAlert.java” class.
Below is the test script that is equivalent to the above mentioned scenario.

1 import java.awt.Robot;</pre>

2 import java.awt.event.KeyEvent;

3 import org.junit.After;

4 import org.junit.Before;

5 import org.junit. Test;

6 import org.openga.selenium.By;

7 import org.openga.selenium.WebDriver;

8 import org.openga.selenium.firefox.FirefoxDriver;
9

10 public class DemoWindowAlert {

11 WebDriver driver;

12 @Before

13

14 public void setUp()

15 {

16 driver=new FirefoxDriver();

17 driver.get("https://gmail.com");

18 driver.manage().window().maximize();

19}

20

21 @Test

22 public void testWindowAlert() throws Exception{
23

24 /] enter a valid email address

25 driver.findElement(By.id("Email™)).sendKeys("TestSelenium1607@gmail.com");
26

27 /I enter a valid password

156

28 driver.findElement(By.id("Passwd")).sendKeys("TestSelenium™);

29
30 // click on sign in button

31 driver.findElement(By.id("signin™)).click();
32 Thread.sleep(30000);

33
34/ click on compose button

35 driver.findElement(By.xpath("//div[@class="z0"]//div[contains(text(), COMPOSE"]")).click();

36
37 I/ click on attach files icon

38 driver.findElement(By.xpath("//div[contains(@command,'Files")]//div[contains(@class,'aaA")]")).click();

39

40 // creating instance of Robot class (A java based utility)

41 Robot rb =new Robot();
42

43 /I pressing keys with the help of keyPress and keyRelease events

44 rb.keyPress(KeyEvent.VK_D);

45 rb.keyRelease(KeyEvent.VK_D);

46 Thread.sleep(2000);

47

48 rb.keyPress(KeyEvent.VK_SHIFT);

49 rb.keyPress(KeyEvent. VK_SEMICOLON);
50 rb.keyRelease(KeyEvent.VK_SEMICOLON);
51 rb.keyRelease(KeyEvent.VK_SHIFT);

52

53 rb.keyPress(KeyEvent.VK_BACK_SLASH);
54 rb.keyRelease(KeyEvent.VK_BACK_SLASH);
55 Thread.sleep(2000);

56

57 rb.keyPress(KeyEvent.VK_P);

58 rb.keyRelease(KeyEvent.VK_P);

59

60 rb.keyPress(KeyEvent.VK_I);

61 rb.keyRelease(KeyEvent. VK _I);

62

63 rb.keyPress(KeyEvent.VK_C);

64 rb.keyRelease(KeyEvent.VK_C);

65 Thread.sleep(2000);

66

67 rb.keyPress(KeyEvent. VK_ENTER);

68 rb.keyRelease(KeyEvent.VK_ENTER);

69 Thread.sleep(2000);

70 }

71

72 @After

157

73 public void tearDown()

74 {

75 driver.quit();

76}

77}

Code Walk-through

Import Statements

import java.awt.Robot — Import this package prior to the script creation The package references to the Robot
class in java which is required simulate keyboard and mouse events.

import java.awt.event.KeyEvent — The package allows the user to use keyPress and keyRelease events of
keyboard.

Object Creation for Robot class

Robot rb =new Robot();

We create a reference variable for Robot class and instantiate it.

KeyPress and KeyRelease Events

rb.keyPress(KeyEvent.VK_D);

rb.keyRelease(KeyEvent.VK_D);

The keyPress and keyRelease methods simulate the user pressing and releasing a certain key on the keyboard
respectively.

Conclusion

In this tutorial, we tried to make you acquainted with the WebDriver’s Alert class that is used to handle web
based pop ups. We also briefed you about the Robot class that can be used to populate the value in the window
based alert with the help of keyPress and keyRelease events.

Article summary:

o Alerts are a small box that appears on the display screen to give you some kind of information or to
warn you about a potentially damaging operation or it may even ask you for the permissions for the
operation.

e There are popularly two types of alerts—

e Windows based alert pop ups
e Web based alert pop ups

e Prior to the actual scripting, we need to import a package to be able to create a WebDriver script for
handling a dropdown and making the Select class accessible.

o WebDriver offers the users with a very efficient way to handle these pop ups using Alert interface.

o void dismiss() — The dismiss() method clicks on the “Cancel” button as soon as the pop up window
appears.

« void accept() — The accept() method clicks on the “Ok” button as soon as the pop up window appears.

158

o String getText() — The getText() method returns the text displayed on the alert box.

« void sendKeys(String stringToSend) — The sendKeys() method enters the specified string pattern into the
alert box.

« Handling window based pop-ups have always been a little tricky as we know Selenium is an
automation testing tool which supports only web application testing, that means, it doesn’t support
windows based applications and window alert is one of them.

e Robot class is a java based utility which emulates the keyboard and mouse actions and can be
effectively used to handling window based pop up with the help of keyboard events.

o The keyPress and keyRelease methods simulate the user pressing and releasing a certain key on the
keyboard respectively.

Next Tutorial #17: In the upcoming tutorial, we would discuss about the various other commonly used
WebDriver commands. We would shed light on topics like exception handling and iframe handling. We would
also discuss about the get commands provided in WebDriver.

We would explain these topics with quick examples in order to make them understandable for the readers to
exercise these concepts in their day to day scripting.

Note for the Readers: Till then, stay tuned and automate the web pages having web based and window based

pop ups using WebDriver utility — “Alert class” and Java utility — “Robot Class”.
Feel free to post your queries/comments about this or any other previous tutorials in comments below.

159

http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/

Tutorial #17 — Commonly used commands

Various Commonly and Routinely Used Selenium WebDriver Commands —
Selenium Tutorial #17

In the last tutorial, we discussed about the different types of alertsencountered while testing web based

applications and their effective ways of handling. We discussed both the types of alerts i.e. “Web-based alerts”
and “Window-based alerts” at length. We also made you acquainted with yet another Java based utility named

as “Robot Class” to handle windows-based pop up.

Advancing ahead in this Selenium WebDriver tutorial series, we would be pressing on various commonly and
routinely used Selenium WebDriver commands. We will precisely and briefly discuss each of these

Selenium commands so as to make you capable of using these commands effectively whenever the situation
arises. Selenium WebDriver Commands:

Just to have a rough idea, we would be discussing the following Selenium WebDriver commands and their
different versions:

get() methods

Locating links by linkText() and partialLinkText()
Selecting multiple items in a drop dropdown
Submitting a form

Handling iframes

close() and quit() methods

7. Exception Handling
#1) get() Methods

WebDriver
command

© g s~ N e

Usage

get() » The command launches a new browser and
opens
the specified URL in the browser instance
* The command takes a single string type
parameter that is usually a URL of application
under test
* To the Selenium IDE users, the command
may look very much like open command

driver.get("https://google.com");
getClass() The command is used to retrieve the Class

object
that represents the runtime class of this object

160

http://www.softwaretestinghelp.com/handle-alerts-popups-selenium-webdriver-selenium-tutorial-16/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

WebDriver
command

getCurrentUrl()

getPageSource()

getTitle()

getText()

Usage

driver.getClass();

» The command is used to retrieve the URL of
the webpage the user is currently accessing

* The command doesn’t require any parameter
and returns a string value

driver.getCurrentUrl();

» The command is used to retrieve the page
source

of the webpage the user is currently accessing
* The command doesn’t require any parameter
and returns a string value

* The command can be used with various
string operations like contains() to ascertain
the

presence of the specified string value

boolean result =
driver.getPageSource().contains(*'String to
find"™);

* The command is used to retrieve the title of
the webpage the user is currently working on.
A null string is returned if the webpage has no
title

* The command doesn’t require any parameter
and returns a trimmed string value

String title = driver.getTitle();

* The command is used to retrieve the inner
text

of the specified web element

* The command doesn’t require any parameter
and returns a string value

« It is also one of the extensively used
commands for verification of messages,
labels, errors etc displayed

on the web pages.

String Text =
driver.findElement(By.id("Text")).getText();

161

WebDriver
command

getAttribute()

getWindowHandle()

getWindowHandles()

Usage

» The command is used to retrieve the value
of the specified attribute

* The command requires a single string
parameter that refers to an attribute whose
value we aspire to know and returns a string
value as a result.

driver.findElement(By.id("findID")).
getAttribute("value");

» The command is used to tackle with the
situation when we have more than one
window to deal with.

* The command helps us switch to the newly
opened window and performs actions on the
new window.

The user can also switch back to the previous
window if he/she desires.

private String winHandleBefore;
winHandleBefore =
driver.getWindowHandle();
driver.switchTo().window(winHandleBefore);

* The command is similar to that of
“getWindowHandle()” with the subtle
difference that it helps to deal with multiple
windows i.e. when we have to deal with more
than 2 windows.

The code snippet for “getWindowHandles()” is given below:

1 public void explicitWaitForWinHandle(final WebDriver dvr, int timeOut, final boolean close) throws WeblivException

2{
3
4try {

5 Wait<WebDriver> wait = new WebDriverWait(dvr, timeOut);
6 ExpectedCondition<Boolean> condition = newExpectedCondition<Boolean>() {

7
8 @Override
9 public Boolean apply(WebDriver d) {

10 int winHandleNum = d.getWindowHandles().size();

11

12 if (winHandleNum > 1)

134

14 /I Switch to new window opened

162

15 for (String winHandle : d.getWindowHandles())

16 {

17 dvr.switchTo().window(winHandle);

18

19 // Close the delete window as it is not needed

20 if (close && dvr.getTitle().equals("Demo Delete Window™))

214

22 dvr.findElement(By.name("ok")).click();

23}

24}

25 return true;

26 }

27 return false;

28 }

29}

#2) Locating links by linkText() and partialLinkText()

Let us access “google.com” and “abodeqa.com” using linkText() and partialLinText() methods of WebDriver.
C AN file:///F/Work/Selenium/Testing-Presentation/DemoWebPopup.htm

For quick access, place your bookmarks here on the bockmarks bar. Import bookmarks now..
e C!_Q.Qﬂi Hyperlinks to be
* abodeQA clicked
Red v Apple v Select v

Click the button to display a confirm box

Try it

The above mentioned links can be accessed by using the following commands:
driver.findElement(By.linkText(*“Google”)).click(),

driver.findElement(By.linkText(“abodeQA”)).click(),

The command finds the element using link text and then click on that element and thus the user would be re-
directed to the corresponding page.

The above mentioned links can also be accessed by using the following commands:
driver.findElement(By.partialLinkText(“Goo”)).click(),
driver.findElement(By.partialLinkText(“abode”)).click();

The above two commands find the elements based on the substring of the link provided in the parenthesis and
thus partialLinkText() finds the web element with the specified substring and then clicks on it.

#3) Selecting multiple items in a drop dropdown
There are primarily two kinds of dropdowns:

163

1. Single select dropdown: A dropdown that allows only single value to be selected at a time.

2. Multi select dropdown: A dropdown that allows multiple values to be selected at a time.

Consider the HTML code below for a dropdown that can select multiple values at the same time.
1 <select id="SelectID_One" multiple="">

<option value="redvalue">Red</option

2>

3 <option value="greenvalue">Green</option>
4 <option value="yellowvalue">Yellow</option>

5 <option value="greyvalue">Grey</option>

6 </select>
Red
Green
Apple v
Yellow ge
Grey
Dropdown that can Dropdown that can select

select multiple values only a single value

The code snippet below illustrates the multiple selections in a drop down.
1 // select the multiple values from a dropdown
2 Select selectByValue = newSelect(driver.findElement(By.id("SelectiD_One")));
3 selectByValue.selectByValue("greenvalue");
4 selectByValue.selectByVisibleText("Red");
5 selectByValue.selectBylndex(2);
#4) Submitting a form

Most or almost all the websites have forms that need to be filled and submitted while testing a web application.

User may come across several types of forms like Login form, Registration form, File Upload form, Profile

Creation form etc.

164

New User

Username

Email

Password

Password confirmation

(Submit)

In WebDriver, user is leveraged with a method that is specifically created to submit a form. The user can also
use click method to click on the submit button as a substitute to submit button.

Check out the code snippet below against the above “new user” form:
1 // enter a valid username

2 driver.findElement(By.id("username")).sendKeys("name");

3

4 |l enter a valid email address

5 driver.findElement(By.id("email")).sendKeys("name@abc.com");
6

7 Il enter a valid password

8 driver.findElement(By.id("password")).sendKeys(""namepass");
9

10 // re-enter the password

11 driver.findElement(By.id("passwordConf")).sendKeys("'namepass");
12

13 // submit the form
14 driver.findElement(By.id("submit™)).submit();

Thus, as soon as the program control finds the submit method, it locates the element and triggers
the submit() method on the found web element.

#5) Handling iframes

While automating web applications, there may be situations where we are required to deal with multiple frames
in a window. Thus, the test script developer is required to switch back and forth between various frames or
iframes for that matter of fact.

An inline frame acronym as iframe is used to insert another document with in the current HTML document or
simply a web page into another web page by enabling nesting.

165

Consider the following HTML code having iframe within the webpage:
1 <html>
2 <head><title>Software Testing Help - iframe session</title>

</head
3 >

<body
4>

5 <div>

6 <iframe id="ParentFrame">

7 <iframe id="ChildFrame">

8 <input type="text" id="Username">UserID</input>

9 <input type="text" id="Password">Password</input>
10 </iframe>

11 <putton id="LogIn">Log In</button>
12 </iframe>

13 </div>

14 </body>

15 </html>

The above HTML code illustrates the presence of an embedded iframe into another iframe. Thus, to be able to
access the child iframe, user is required to navigate to the parent iframe first. After performing the required
operation, user may be required to navigate back to the parent iframe to deal with the other element of the

webpage.
It is impossible if a user tries to access the child iframe directly without traversing to the parent iframe first.

Select iframe by id

driver.switchTo().frame(“ID of the frame*);

Locating iframe using tagName

While locating an iframe, user might face some trouble if the iframe is not attributed with standard properties. It
becomes a complex process to locate the frame and switch to it. To buckle down the situation, user is leveraged
to locate an iframe using tagName method similar to the way we find any other web element in WebDriver.

driver.switchTo().frame(driver.findElements(By.tagName(“iframe”).get(0));
The above command locates the first web element with the specified tagName and switches over to that iframe.
“get(0) is used to locate the iframe with the index value.” Thus, in lines with our HTML code, the above code

syntax would lead the program control to switch to “ParentFrame”.

Locating iframe using index:
a) frame(index)
driver.switchTo().frame(0);

166

b) frame(Name of Frame)

driver.switchTo().frame(“name of the frame”);

¢) frame(WebElement element)

Select Parent Window

driver.switchTo().defaultContent();

The above command brings the user back to the original window i.e. out of both the iframes.

#6) close() and quit() methods
There are two types of commands in WebDriver to close the web browser instance.

a) close(): WebDriver’s close() method closes the web browser window that the user is currently working on or
we can also say the window that is being currently accessed by the WebDriver. The command neither requires

any parameter nor does it return any value.

b) quit(): Unlike close() method, quit() method closes down all the windows that the program has opened.
Same as close() method, the command neither requires any parameter nor does it return any value.

Refer the below code snippets:

driver.close(); // closes only a single window that is being accessed by the WebDriver instance currently

driver.quit(); // closes all the windows that were opened by the WebDriver instance
#7) Exception Handling

Exceptions are the conditions or situations that halt the program execution unexpectedly.

Reasons for such conditions can be:
o Errors introduced by the user
o Errors generated by the programmer
o Errors generated by physical resources
Thus, to deal with these unexpected conditions, exception handling was conceptualized.

With respect to Java code that we implement while automating a web application can be enclosed within a
block that that is capable of providing a handling mechanism against the erroneous conditions.

Catching an exception
To catch an exception, we use the below block of code

1 try{
2 /I Protected block

3 /I implement java code for automation
4%
5 catch (ExceptionName e)

64

167

7 I/ catch block - Catches the exceptions generated in try block without halting the program execution

8}

If any exception occurs in the try block/protected block, then the execution controls checks for a catch block for
the matching exception type and passes the exception to it without breaking the program execution.

Multiple Catch Blocks

1 try{
2 /IProtected block

3}

4 catch (ExceptionTypel e)
54

6 // catch block

7}

8 catch (ExceptionType2 e)
94

10 // catch block

11}

12 catch (ExceptionType3 e)
13{

14 /I catch block

15}

In the above code, exception is likely to be caught in the first catch block if the exception type matches. If the
exception type does not match, then the exception is traversed to the second catch block and third catch block
and so on until the all catch blocks are visited.

WebDriver conditions and Exception Handling

When we aspire to verify the presence of any element on the webpage using various WebDriver ‘s conditional
commands, WebDriver presumes the web element to be present on the web page. If the web element is not
present on the web page, the conditional commands throw a “NoSuchElementPresentException™. Thus to avoid
such exceptions from halting the program execution, we use Exception Handling mechanisms. Refer the code
snippet below:

1 WebElement saveButton = driver.findElement(By.id("Save™));
2 try{

3 if(saveButton.isDisplayed()){

4 saveButton.click();

5 %}

6}

7 catch(NoSuchElementException e){

8 e.printStackTrace();

9}

Conclusion

168

In this tutorial, we introduced various WebDriver’s commonly and excessively used commands. We tried to
explain the commands with the suitable examples and code snippets.

Next Tutorial #18: In the upcoming tutorial, we would discuss about Web tables, frames and dynamic
elements which are essential part of any web project. We will also cover the exception handling important

topic in more details in one of the upcoming Selenium Tutorials.
Note for the Readers: Till then, stay tuned and automate the web pages and use the above documented
commands.

169

http://www.softwaretestinghelp.com/selenium-tutorial-18/

Tutorial #18 — Handling Web Tables, Frames, Dynamic Elements

Handling Web Tables, Frames, and Dynamic Elements in Selenium Script —
Selenium Tutorial #18

In last Selenium WebDriver tutorial we learned various commonly and routinely used Selenium WebDriver
commandsincluding important topics like handling iframe and exceptions in Selenium scripts.
Moving ahead in our comprehensive series of tutorials on Selenium, in this tutorial we would discuss
about handling Web tables, iframe and dynamic elements which are essential part of any web project.
This tutorial consists of 3 different topics and their handling mechanisms in selenium script.

1. Web TablessHTML tables

2. Frames

3. Dynamic elements
#1) Web Tables/HTML Tables

In this module we will learn about the web tables or html tables in a web page, tags available in html and how to
handle web tables dynamically.

Web tables are basically group of elements that are logically stored in a row and column format. It is used to
organize similar information in a web page.

Below is an example of Html table:

Firstname Lastname Points
Jill Smith 50
Eve Jackson 94
John Doe 80
Adam Johnson 67

Below is the snippet of html structure of an html table:

Bl <table class="reference” style="width:60%">

= <tbedy> = <tr>

I <tr>

<tr>
#H <tr>
+H <tcr> </tr>

#H <tr>

Below tags are generally defined in an html tables:

- <

Col <th>Firstname</th>
<th>Lastname </th>
<th>Points</th>

= <tr>
<td>Jill</td>
<td>Smith</td>
<td>50</td>
</tr>

170

http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/
http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

1.’table’ tag defines html table.

2.’tbody’ tag defines container for rows and columns.
3.’tr’ defines rows in an html table.

4.’td’/’th’ define column of an html table.

Find the details of a web table:

There are many ways we can handle a web table.

Approach #1:
Below is the xpath of one of the cell in html table. Let’s say “firstname”

//div[@id="main’] /table[1]/tbody/tr[1]/th[1]
tr[1] defines first row and th[1] defines first column.

If number of rows and columns are always constant, let’s say our html table will always have 5 rows and 3
columns.

1 for(int numberOfRows=1; numberOfRows<=5; numberOfRows++)
2{

3 for(int numberOfCol=1; numberOfCol <=3; humberOfCol++)

44

5 System.out.printin(driver.findElement(By.xpath

6 (“//div[@id='main']/table[1]/tbody/tr

7 [“+numberOfRows+"]/th[“+numberOfCol+]”)));

8}

9}

Except row and column number, each component of xpath remains the same. So you can iterate using “for

loop” for each row and column as mentioned above.

Approach #2:
First approach is best suitable for the table which doesn’t change its dimensions and always remains the same.

Above approach will not be a perfect solution for dynamically changing web tables.

Let’s take above html table as an example:
1 WebElement htmltable=driver.findElement(By.xpath("//*[@id="main")/table[1]/tbody"));
2 List<WebElement> rows=htmltable.findElements(By.tagName("tr"));
3
4 for(int rnum=0;rnum<rows.size();rnum-++)
54
6 List<WebElement> columns=rows.get(rnum).findElements(By.tagName("th™));
171

7 System.out.printin("Number of columns:"+columns.size());
8

9 for(int cnum=0;cnum<columns.size();cnum-++)

10 {

11 System.out.printin(columns.get(cnum).getText());

12}

13}

Step 1: First get the entire html table and store this in a variable ‘htmltable’ of type web element.

Step 2: Get all the rows with tag name ‘tr’ and store all the elements in a list of web elements. Now all the
elements with tag ‘tr’ are stored in ‘rows’ list.

Step 3: Loop through each row and get the list of elements with tag z2". ‘rows.get(0) will give first row
and ‘findElements(By.tagName(“th”’))” will give list of columns for the row.

Step 4: Iterate using ‘columns.getsize()’ and get the details of each cell.

Note: Above approach will be best suitable if the table dimensions changes dynamically.

This concludes the topic how to handle web tables in selenium. Next we will learn about handling an element
inside frame.

#2) Frames:

In this section we will learn about the frames in a web page and how to identify the frames. Also we will find
out how we can handle a frame in selenium WebDriver.

Many developers like to place elements inside frame. Frame is just like a container where few elements can be
grouped.

Identification of a frame:
Different ways to know if the element is present inside a frame or not

#1. Right click on the element. Check if “This Frame” option is available. If This frame option is available, it
means that the element is inside a frame.

#2. View page source of the web page and check if any tag is available for ‘iframe’.

172

eby deals

Open Link in New Tab
Open Link in New Window

Open Link in New Private Window

Always Bookmark This Link
Free Shipping Save Link As::
Copy Link Location
View Image
Copy Image
Show Only This Frame Copy Image Location
Open Frame in New Tab Save Image As...
Open Frame in New Window Email Image...
Reload Frame Set As Desktop Background...
Bookmark This Frame View Image Info
Save Frame As... This Frame !
View XPath
Print Frame...
Inspect Element (Q)

View Frame Source

I = ik’ Inspect Element with Firebug

Verify Number of frames in a webpage:

All the frames are having tag name as “iframe”.

List<WebElement> frameList=driver.findElements(By.tagName(“iframe”));
System.out.printIn(frameList.size());

In above example: frameList will have all the list of frames and frameList.size() will give the number of
frames.

Handling an element inside frame:

If an element is inside a frame then control has to switch to frame first and then start operating on the elements.

Step 1: To switch inside a frame:

driver.switchTo().frame(1); //pass frame number as parameter.

or

driver.switchTo().frame('frame Name”); //pass frame name as parameter.

or

driver.switchTo().frame(“xpath of the frame”);

Step 2: After switching inside a frame selenium will be able to operate on elements.

173

driver.findElement(//*[@id="username’]).sendKeys(“‘username”);
driver.findElement(//*[@id="pass’]).sendKeys(“password”);

Here, we have learned how to handle an element inside frame and next we will cover about the different ways
to handle dynamic element.

#3) Dynamic elements:
In this section we will learn different ways to handle dynamic element and construct generic Xpath.

In few scenarios, element attributes change dynamically. It can be ‘id’, 'name’ etc.

Example: let’s say ‘id’ of a username field is “‘username 123’ and the xpath will be
//*[@id="username_123'] but when you open the page again the ‘id’ of ‘username’ field might have changed
and the new value may be ‘username 234’.

In this case the test will fail because the selenium could not find the xpath you have passed earlier as the id of
the field has changed to some other value.

There are many approaches depending upon the type of problem:

Problem Type 1: If part of the attribute value changes.
Example: As in the above example, id value changes but few fields remains constant.

‘username 123’ changed to ‘username 234’ but ‘username’ always remained constant.
You can construct xpath as below:

driver.findElement(By.xpath(*"//*[contains(@id, 'username’)] ”’)).sendKeys(“‘username”);
driver.findElement(By.xpath(*//*[starts-with(@id, 'user’)] ”)).sendKeys(“username”);
‘contains’ 1s a java method which checks if id contains the substring username.
starts-with() checks if any attribute starts with “user”.

Problem Type 2: If entire value of the attribute changes dynamically.

Again in this case, there could be different approaches:

Email or Phone Password

For example: if id of ‘login’ field changes dynamically and there is no constant value to use contains method.
Solution: Use of sendKeys.
Selenium provides different api to use function keys. For example tab key, enter keys, F5 etc.
Step 1: Enter password
driver.findElement(By.id(“password”)).sendKeys(“password”)),

174

Step 2: Use key functions to navigate to element.
driver.findElement(By.id(“password”)).sendKeys(Keys. ENTER)),
or

driver.findElement(By.id(“password”)).sendKeys(Keys.TAB));
Conclusion:

Web tables, frames and dynamic elements are essential part of any web project. It is always desirable to write
effective code to handle web tables and dynamic elements.

Understanding the construction of generic xpath which is very helpful while handling dynamic elements. In
case of a frame, your script has to switch the frame and then operate on the element.

Next tutorial #19: In next Selenium tutorial we will learn about types of exceptions and how to handle

exceptions in java in Selenium scripts.
Please post your queries related to Web tables, frames and handling dynamic element if you have any.

175

http://www.softwaretestinghelp.com/exception-handling-framework-selenium-tutorial-19/

Tutorial #19 — Exception Handling

Handling Exceptions Using Exception Handling Framework in Selenium
Scripts — Selenium Tutorial #19

In last WebDriver tutorial we learned about 3 different types of important web elements like \Web Tables
Frames and Dynamic elementsand their handling mechanisms in selenium script

Before moving ahead with Framework tutorials in this Selenium training series, here in this tutorial we will
learn about types of exceptions and how to handle exceptions in java and Selenium scripts.
Developers/testers use exception handling framework to handle exception in selenium scripts.

Example: When selenium script fails due to wrong locator, then developer should be able to understand the
reason for failure and this can be achieved easily if the exception is handled properly in the program.

Below we have described the types of exceptions and the different ways how we can use exception handling
framework in selenium scripts.

Exceptions are events due to which java program ends abruptly without giving expected output. Java provides a
framework where user can handle exceptions.

There are three Kinds of exceptions:
1. Checked Exception
2. Unchecked Exception
3. Error

Class hierarchy of exception and error:

Throwable
|8 7
Exception . | Error
& 2/ < J
Checked | Unchecked
Exception Exception
" y € Y,

Class hierarchy of exception and error

176

http://www.softwaretestinghelp.com/selenium-tutorial-18/
http://www.softwaretestinghelp.com/selenium-tutorial-18/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

#1) Checked Exception: Checked exception is handled during compile time and it gives compilation error if it
is not caught and handled during compile time.

Example: FileNotFoundException, IOException etc.

#2) Unchecked Exception: In case of unchecked exception, compiler does not mandate to handle. Compiler
ignores during compile time.

Example: ArraylndexoutOfBoundException

#3) Error: When a scenario is fatal and program cannot recover then JVM throws an error. Errors cannot be
handled by try catch block. Even if user tries to handle error by using Try catch block, it cannot recover from
error.

Example: Assertion error, OutOfMemoryError etc.
Exception handling:

Try and Catch block:
try-catch blocks are generally used to handle exceptions. Type of exceptions is declared in catch block which is
expected to come. When an exception comes in try block, immediately control moves to catch block.

Example:

Ltry {
2 br = new BufferedReader(new FileReader("Data"));

3} catch(IOException ie)

4 A
5 ie.printStackTrace();
6 }

There can be multiple catch blocks for one try block depending upon type of exception.

Example:

Ltry {
2 br = new BufferedReader(new FileReader("Data"));

3} catch(IOException ie)

4 A

5 ie.printStackTrace();

6 7} catch(FileNotFoundException file){
7 file.printStackTrace();

8 1}

throws Exception:
throws keyword in java is used to throw an exception rather than handling it. All checked exceptions can be
thrown by methods.

Example:
1 public static void main(String[] args) throws IOException

2{
3 BufferedReader br=new BufferedReader(newFileReader("Data"));

177

4 while ((line = br.readLine()) != null)
5 {

6 System.out.printin(line);

7 }

8}

finally block:

finally block executes irrespective of execution of try catch block and it executes immediately after try/catch
block completes.
Basically file close, database connection etc. can be closed in finally block.

Example:

1try {
2 br = new BufferedReader(new FileReader("Data"));

} catch(IOException ie)

{
ie.printStackTrace();

Finally {
br.close();

}

In the above example, BufferReader stream is closed in finally block. br.close() will always execute irrespective
of execution of try and catch block.

Note: finally block can exist without any catch block. It is not necessary to have a catch block always.

There can be many catch blocks but only one finally block can be used.

3
4
5
6 }
7
8
9

Throwable: Throwable is parent class for error and exception. Generally it is difficult to handle errors in java. If
programmer is not sure about the type of error and exception, then it is advised to use Throwable class which
can catch both error and exception.

Example:

Ltry {
2 br =new BufferedReader(new FileReader("Data"));

3 }catch (Throwable t)
4 A

5 t.printStackTrace();
6

}
Exceptions in Selenium WebDriver:

Selenium has its own set of exceptions. While developing selenium scripts, programmer has to handle or throw
those exceptions. Below are few examples of exceptions in selenium.

Examples:
ElementNotVisibleException: If selenium tries to find an element but element is not visible within page
178

NoAlertPresentException: If user tries to handle an alert box but alert is not present.
NoSuchAttributeException: While trying to get attribute value but attribute is not available in DOM.
NoSuchElementException: This exception is due to accessing an element which is not available in the page.

WebDriverException: Exception comes when code is unable to initialize WebDriver.
Conclusion:

Exception handling is the essential part of every java program as well as selenium script. We can build robust
and optimal code by handling exception in smart ways. And it is also a best practice to handle exceptions in
script which will give you a better report when program fails due to any reason.

Here we have tried to cover the process and framework of exception handling which is required to be
implemented in selenium scripts.

Remember it is not mandatory to always handle exception in try-catch block. You can also throw an exception
depending upon the requirement in script.

Next Tutorial #20: In the upcoming tutorial, we would discuss about the various types of testing frameworks
available. We would also study about the pros and cons of using a fledged framework approach in automation
testing. We would discuss in detail about Test data driven framework.

Please post your queries, related to handling exception in Selenium WebDriver, if you have any

179

http://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/

Selenium Framework

Tutorial #20 — Most popular Test Automation frameworks(Must Read)

Tutorial #21 — Selenium Framework Creation & Accessing Test Data from Excel (Must Read)
Tutorial #22 — Creating Generics and Testsuite

Tutorial #23 — Using Apache ANT

Tutorial #24 — Setting up Selenium Maven Project

Tutorial #25 — Using Hudson Continuous integration tool

180

Tutorial #20 — Most popular Test Automation frameworks(Must Read)

Most Popular Test Automation Frameworks with Pros and Cons of Each —
Selenium Tutorial #20

In the last few Selenium tutorials, we discussed about various commonly and popularly used commands in
WebDriver, handling web elements like Web Tables, Framesand handling exceptions in Selenium scripts.
We discussed each of these commands with sample code snippets and examples so as to make you capable of
using these commands effectively whenever you are encountered with similar situations. Amongst the
commands we discussed in the previous tutorial, few of them owe utmost importance.

As we move ahead in the Selenium series, we would concentrate our focus towards Automation Framework
creation in the next few upcoming tutorials. We would also shed light on various aspects of an Automation
framework, types of Automation frameworks, benefits of using a framework and the basic components that
constitutes an Automation framework.

What is Framework?

A framework is considered to be a combination of set protocols, rules, standards and guidelines that can be
incorporated or followed as a whole so as to leverage the benefits of the scaffolding provided by the
Framework.

Let us consider a real life scenario.
We very often use lifts or elevators. There are a few guidelines those are mentioned within the elevator to be
followed and taken care off so as to leverage the maximum benefit and prolonged service from the system.

Thus, the users might have noticed the following guidelines:

o Keep a check on the maximum capacity of the elevator and do not get onto an elevator if the maximum
capacity has reached.

e Press the alarm button in case of any emergency or trouble.

« Allow the passenger to get off the elevator if any before entering the elevator and stand clear off the
doors.

e In case of fire in the building or if there is any haphazard situation, avoid the use of elevator.

e Do not play or jump inside the elevator.

e Do not smoke inside the elevator.

« Call for the help/assistance if door doesn’t open or if the elevator doesn’t work at all. Do not try to open
the doors forcefully.

181

http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/
http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/
http://www.softwaretestinghelp.com/selenium-tutorial-18/
http://www.softwaretestinghelp.com/exception-handling-framework-selenium-tutorial-19/

There can be many more rules or sets of guidelines. Thus, these guidelines if followed, makes the system more
beneficial, accessible, scalable and less troubled for the users.

Now, as we are talking about “Test Automation Frameworks”, let us move our focus towards them.
Test Automation Framework

A “Test Automation Framework” is scaffolding that is laid to provide an execution environment for the
automation test scripts. The framework provides the user with various benefits that helps them to develop,
execute and report the automation test scripts efficiently. It is more like a system that has created specifically to
automate our tests.

In a very simple language, we can say that a framework is a constructive blend of various guidelines, coding
standards, concepts, processes, practices, project hierarchies, modularity, reporting mechanism, test data
injections etc. to pillar automation testing. Thus, user can follow these guidelines while automating application
to take advantages of various productive results.

The advantages can be in different forms like ease of scripting, scalability, modularity, understandability,
process definition, re-usability, cost, maintenance etc. Thus, to be able to grab these benefits, developers are
advised to use one or more of the Test Automation Framework.

Moreover, the need of a single and standard Test Automation Framework arises when you have a bunch of
developers working on the different modules of the same application and when we want to avoid situations
where each of the developer implements his/her approach towards automation.

Note: Take a note that a testing framework is always application independent that is it can be used with any
application irrespective of the complications (like Technology stack, architecture etc.) of application under
test. The framework should be scalable and maintainable.
Advantage of Test Automation framework
1. Reusability of code
Maximum coverage
Recovery scenario
Low cost maintenance
Minimal manual intervention

o bk~ wn

6. Easy Reporting
Types of Test Automation Framework

Now that we have a basic idea of what is an Automation Framework, in this section we would harbinger you
with the various types of Test Automation Frameworks those are available in the market place. We would also
try shed lights over their pros and cons and usability recommendations.

182

There is a divergent range of Automation Frameworks available now days. These frameworks may differ from
each other based on their support to different key factors to do automation like reusability, ease of maintenance
etc.

Let us discuss the few most popularly used Test Automation Frameworks:
1. Module Based Testing Framework

Library Architecture Testing Framework

Data Driven Testing Framework

Keyword Driven Testing Framework

Hybrid Testing Framework

6. Behavior Driven Development Framework

o~ wn

(click on image to view enlarged)

R © www.SoftwareTestingHelp.com

Frameworks

|
l l l l | l

Module Library Architecture Data Driven Keyword Hybrid BDD
Based Testing Testing Framework Testing Driven Testing Testing Framework
Framework Framework Framework Framework

Test Automation Frameworks

Let us discuss each of them in detail.
But before that | would also like to mention that despite having these framework, user is always leveraged to

build and design his own framework which is best suitable to his/her project needs.
#1) Module Based Testing Framework

Module based Testing Framework is based on one of the popularly known OOPs concept — Abstraction. The
framework divides the entire “Application Under Test” into number of logical and isolated modules. For each
module, we create a separate and independent test script. Thus, when these test scripts taken together builds a
larger test script representing more than one modules.

These modules are separated by an abstraction layer in such a way that the changes made in the sections of the

application doesn’t yields affects on this module.

Module Test Script

183

Module 1 \

Module 2

Larger Test Script
Module .. & i

Module ..

Module n

Pros:

1. The framework introduces high level of modularization which leads to easier and cost efficient
maintenance.
The framework is pretty much scalable
If the changes are implemented in one part of the application, only the test script representing that part
of the application needs to be fixed leaving all the other parts untouched.

Cons:

1. While implementing test scripts for each module separately, we embed the test data (Data with which

we are supposed to perform testing) into the test scripts. Thus, whenever we are supposed to test with a

different set of test data, it requires the manipulations to be made in the test scripts.
#2) Library Architecture Testing Framework

The Library Architecture Testing Framework is fundamentally and foundationally built on Module Based
Testing Framework with some additional advantages. Instead of dividing the application under test into test
scripts, we segregate the application into functions or rather common functions can be used by the other parts of
the application as well. Thus we create a common library constituting of common functions for the application
under test. Therefore, these libraries can be called within the test scripts whenever required.

The basic fundamental behind the framework is to determine the common steps and group them into functions
under a library and call those functions in the test scripts whenever required.

184

Example: The login steps can be combined into a function and kept into a library. Thus all the test scripts those
require to login the application can call that function instead of writing the code all over again.

Common
Library

Login Test Script
—_—

v

Pros:
1. Like Module Based Framework, this framework also introduces high level of modularization which
leads to easier and cost efficient maintenance and scalability too.
2. As we create common functions that can be efficiently used by the various test scripts across the
Framework. Thus, the framework introduces a great degree of re-usability.
Cons:
1. Like Module Based Framework, the test data is lodged into the test scripts, thus any change in the test
data would require changes in the test script as well.

2. With the introduction of libraries, the framework becomes a little complicated.
#3) Data Driven Testing Framework

While automating or testing any application, at times it may be required to test the same functionality multiple
times with the different set of input data. Thus, in such cases, we can’t let the test data embedded in the test
script. Hence it is advised to retain test data into some external data base outside the test scripts.

Data Driven Testing Framework helps the user segregate the test script logic and the test data from each other.
It lets the user store the test data into an external database. The external databases can be property files, xml
files, excel files, text files, CSV files, ODBC repositories etc. The data is conventionally stored in “Key-Value”
pairs. Thus, the key can be used to access and populate the data within the test scripts.

Note: The test data stored in an external file can belong to the matrix of expected value as well as matrix of
input values.

Test Data

Reading
Mechanism
Test data in External Populates Test Script
system
l data I
Compares
Input Expected Actual
Data Data

[Expected Data

185

Example:
Let us understand the above mechanism with the help of an example.

Let us consider the “Gmail — Login” Functionality.

Step 1: First and the foremost step are to create an external file that stores the test data (Input data and Expected

Data). Let us consider an excel sheet for instance.
Chipboa... '= Font it

F21 v £ |

A B C

1 Username |Password |Home Page Messgae
2 |shruti shrivastava |Welcome Shruti

3 1234(5%5" Welcome1234
4
5

Testl23 Test456 Welcome Test123

Step 2: The next step is to populate the test data into Automation test Script. For this purpose several API’s can

be used to read the test data.
1 public void readTD(String TestData, String testcase) throws Exception {

2 TestData=readConfigData(configFileName,"TestData" driver);

3 testcase=readConfigData(configFileName,"testcase" driver);

4 FilelnputStream td_filepath = new FilelnputStream(TestData);

5 Workbook td_work =Workbook.getWorkbook(td_filepath);

6 Sheet td_sheet = td_work.getSheet(0);

7 if(counter==0)

8 {

9 for (inti=1,j=1;i<=td sheet.getRows()-1; i++){

10 if(td_sheet.getCell(0,i).getContents().equalsignoreCase(testcase)){
11 startrow = i;

12 arrayList.add(td_sheet.getCell(j,i).getContents());

13 testdata_value.add(td_sheet.getCell(j+1,i).getContents());}}

14 for (int j = 0, k = startrow +1; k <= td_sheet.getRows()-1; k++){

15 if(td_sheet.getCell(j,k).getContents()==""){

16 arrayList.add(td_sheet.getCell(j+1,k).getContents());

17 testdata_value.add(td_sheet.getCell(j+2,k).getContents());}}
18 }

19 counter++;

20}
The above method helps to read the test data and the below test step helps the user to type in the test data on the
GUI.

element.sendKeys(obj_value.get(obj_index));

186

Pros:

1. The most important feature of this framework is that it considerably reduces the total number of scripts
required to cover all the possible combinations of test scenarios. Thus lesser amount of code is required
to test a complete set of scenarios.

2. Any change in the test data matrix would not hamper the test script code.

3. Increases flexibility and maintainability

4. Asingle test scenario can be executed altering the test data values.

Cons:

1. The process is complex and requires an extra effort to come up with the test data sources and reading

mechanisms.

2. Requires proficiency in a programming language that is being used to develop test scripts.
#4) Keyword Driven Testing Framework

The Keyword driven testing framework is an extension to Data driven Testing Framework in a sense that it not
only segregates the test data from the scripts, it also keeps the certain set of code belonging to the test script into
an external data file.

These set of code are known as Keywords and hence the framework is so named. Key words are self-guiding as
to what actions needs to be performed on the application.

The keywords and the test data are stored in a tabular like structure and thus it is also popularly regarded as
Table driven Framework. Take a notice that keywords and test data are entities independent of the automation
tool being used.

Populating the values Test Script
Keywords Test

data

4

Example Test case of Keyword Driven Test Framework

STEP NO DESCRIPTION KEYWORD LOCATOR/DATA
Login to
1 | application login
Clickon //*[@id="homepage’]
2 | homepage clickLink
Verify logged in
3 | user verifyLink //*[@id="link’]

In the above example keywords like login, clickLink and verifyLink are defined within the code.
Depending upon the nature of application keywords can be derived. And all the keywords can be reused

187

http://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2014/11/Test-Automation-Frameworks-8.jpg

multiple times in a single test case. Locator column contains the locator value that is used to identify the web
elements on the screen or the test data that needs to be supplied.
All the required keywords are designed and placed in base code of the framework.

Pros:
1. In addition to advantages provided by Data Driven testing, Keyword driven framework doesn’t require
the user to possess scripting knowledge unlike Data Driven Testing.
2. Asingle keyword can be used across multiple test scripts.

1. The user should be well versed with the Keyword creation mechanism to be able to efficiently leverage
the benefits provided by the framework.
2. The framework becomes complicated gradually as it grows and a number of new keywords are

introduced.
#5) Hybrid Testing Framework

As the name suggests, the Hybrid Testing Framework is a combination of more than one above mentioned
frameworks. The best thing about such a setup is that it leverages the benefits of all kinds of associated
frameworks.

Test Script < >
3 | : Keywords | Test
v v v Data

Module Module Module

Common Function Library

Example of Hybrid Framework
Test sheet would contain both the keywords and the Data.

Stepl Navigate to login page navigate

Step2 Enter User Name input //*|@id="username’] | userA
Step3 Enter Password input //*|@id="password’] | password
Stepd Verify Home page verifyUser | //*|@id="User’]

Step5 Verify User link verifylink | link="UserLink' userA
Stepb Logout from the application | clickLink //*|@id="logout’]

In the above example, keyword column contains all the required keywords used in the particular test case and
data column drives all the data required in the test scenario. If any step does not need any input then it can be
left empty.

188

#6) Behavior Driven Development Framework

Behavior Driven Development framework allows automation of functional validations in easily readable and
understandable format to Business Analysts, Developers, Testers, etc. Such frameworks do not necessarily
require the user to be acquainted with programming language. There are different tools available for BDD like
cucumber, Jbehave etc. Details of BDD framework are discussed later in Cucumber tutorial. We have also
discussed details on Gherkin language to write test cases in

Cucumber.

Components of Automation Testing Framework

(click on image to view enlarged)

Automation Testing Framework

Build Tools and Continuous Integration (Repotting)

Test Execution Logging Generated Email
Reports Informatio Exceptions Notification

Execution Environments

;

Common Libraries

Generics Program Logics Data Readers

I

Automation Tool Set
Scripts and resources

Object Test Data Configuration Constant Environment
Repository Files s settings

Test Automation Frameworks www.SoftwareTestingHelp.com

Though the above pictorial representation of a framework is self-explanatory but we would still highlight a few
points.

1. Object Repository: Object Repository acronym as OR is constituted of the set of locators types
associated with web elements.

2. Test Data: The input data with which the scenario would be tested and it can be the expected values
with which the actual results would be compared.

3. Configuration File/Constants/ Environment Settings: The file stores the information regarding the
application URL, browser specific information etc. It is generally the information that remains static
throughout the framework.

189

4. Generics/ Program logics/ Readers: These are the classes that store the functions which can be
commonly used across the entire framework.
5. Build tools and Continuous Integration: These are the tools that aids to the frameworks capabilities to

generate test reports, email notifications and logging information.
Conclusion

The frameworks illustrated above are the most popular frameworks used by the testing fraternity. There are
various other frameworks also in the place. For all the further tutorials we would base on the Data Driven
Testing Framework.

In this tutorial, we discussed about the basics of an Automation Framework. We also discussed about the types
of frameworks available in the market.

Next Tutorial #21: In the next tutorial, we would briefly introduce you with the sample framework, the MS
Excel which would store the test data, excel manipulations etc.

Till then feel free to ask your queries about automation frameworks.

190

http://www.softwaretestinghelp.com/selenium-framework-design-selenium-tutorial-21/

Tutorial #21 — Selenium Framework Creation & Accessing Test Data from Excel (Must Read)

Selenium Framework Creation and Accessing Test Data from Excel —
Selenium Tutorial #21

In the last tutorial, we familiarized you with the basics of test automation Frameworks, its components and
types. The frameworks illustrated in the previous tutorial were a few amongst the most popular frameworks
used by the testing fraternity.

We briefly discussed about Module based Frameworks, Library Architecture based framework, Keyword driven
framework, Data driven Framework and Hybrid Framework. There are various other frameworks also in the
place.

Please take a note that we would be adopting Data Driven Test Automation Framework for the rest of our
tutorials.

In the current tutorial in this series, we would make you acquainted with a sample framework, the Excels

which would store the test data and their Excel manipulations. On the same lines, we would move forward
and introduce new strategies and resources to mature our framework.
So let’s learn:

o Framework creation strategy using a sample project

e Access the test data stored in the external data source
Moving ahead, we would start with the description of the project hierarchy that we would be creating in order to
segregate the various project components.

Refer the below image for the project hierarchy created for the sample project. The below java project can be
easily created within the eclipse the way we have created the projects in the earlier tutorials.

191

http://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

[Package Explorer §3 = o T w
4 g SampleProject
4 i src
4) test
b [J) TestSuitejava 2 4/23/14 2:09 AM s
4 [§ testLogin

- 4k Login_TC 01.java 2 4/23/14 2:09 Al
4 [B testmodule2
> 4B TestScriptl.java
Ha Utilities
> [B ExcelReader.java
{2 Utilities.dataSetters
> [X TestDatajava 2 4/23/14 2:09 AM s
£ Utilities.environmentConstants
b [g Constantsjava2 4/23/14 2:09 AM
48 Utilities.functionLibrary
> 4B CommonMethods.java
» [PostConditionalMethods.java
> 48 PreConditionalMethods.java
143 Utilities.userRoles
> AJ3 AccessRights.java
.- ==, Referenced Libraries
> B JRE System Library [jref]
4 [excel
B Login_TC 01.xls 2 4/23/14 2:09 AM sh
Bl TestScriptl xls

[

[N

[

[N

[N

........................

. [5] Logs.log
| build.xml
[=] chromedriver.log
3 logdjxml 2 4/23/14 2:09 AM shrutil607
Selenium Project Folder Structure — Walkthrough
#1) src — The folder contains all the test scripts, generics, readers and utilities. All these resources are nothing
but the simple java classes. Under the source (src) folder, we have created a hierarchy of folders.
a) test — The “test” folder is constituted of majorly two ingredients — testsuite and the folders representing the
various modules of the application under test. Thus, each of these folders contains the test scripts specific to the
module to which it is associated. Testsuite is a logical combination of more than one test scripts. Thus, the user
can mark an entry of any of the test script within the testsuite that he/she desires to execute in the subsequent
runs.
b) utilities — The “utilities” folder is constituted of various generics, constants, Readers and classes for
implementing user defined exceptions. Each of the folders under utilities has got its own significance.
o Excel Reader — A generic and common class has been created to read the test data (input parameters
and expected results) from the Excel sheets

192

e EnvironmentConstants — The folder are integration of the java classes that stores the static variables
referencing to the paths and other environmental details. These details can be Application URL, URL to
the Databases, Credentials for Databases, and URL to any third party tool being used. The disparate
application URLs can be set for different environments (dev, prod, test, master, slave etc).

o DataSetters — The folder incorporates the classes that implement the getters and setters of the test data
fetched from the Excels. To lode multiple sets of Test data, we create ArrayLists.

e UserRoles — The folder accommodates the classes that take care of the Role based access criteria if any
for instinct users.

o FunctionLibrary — The folder is constituted of the classes which contain functions and methods that
can be shared and used amongst the multiple classes. Very often, we are suppose to perform certain
procedures prior and aftermath to the actual test execution like login to the application, setting up
environments, activities related to rolls, data manipulations, writing results, methods those generate
pre/post-conditions to other methods. Since we tend to perform these activities for all or most of the test
script. Thus it is always recommended to create a separate class for such activities instead of coding
them repeatedly in each of the test script.

« PreConditionalMethods

« PostConditionalMethods
Very often, we are suppose to perform certain procedures prior and aftermath to the actual test execution like
login to the application, setting up environments, activities related to user rolls, data manipulations, writing
results, methods those generate pre/post-conditions to other methods. Since we tend to perform these activities
for all or most of the test script, thus it is always recommended to create a separate class for such activities
instead of coding them repeatedly in each of the test script.

CommonMethods

Like Pre and post conditions, there may be methods and functions those can be used by more than one test
script. Thus, these methods are grouped together in a class. The testscript can access these methods using the
object of the common class.

#2) excelFiles — The excel files are considered to be the data source/data providers for test script execution.
These files store the test data into key value pairs. Make a note that we create a separate excel sheet for each of
the test script i.e. each test script has its own test data file. The name of the test script and the corresponding test
data files/ excel sheet has been kept same for the traceability perspective. Check out the sample test data format
below:

Test Data Format

193

A B C D E F
1 Browser|UserID [Password|Elementl [Element2 |[Element3
ShrutiPas
2 Firefox [Shrutil23(s123 Valuel Value2 |Value3
3 Chrome |Test TestPass |Valued |Value5s Valueb
a

Each of the columns represents a key and each of the rows represents a test data/value. Specify the multiple
rows in order to execute the same test script with multiple data sets.

Mark that the test data formats are solely user defined. Thus based on your requirements, you can customize the
test data files.

#3) library — The folder acts as a repository/artifactory for all the required jar files, libraries, drivers etc to
successfully build the test environment and to execute the test scripts. Refer the following figure to check out
the libraries we would be employing within our project.

wl-26.jar 6/16/2014 7:26 PM File folder

selenium-240.0 6/16/2014 7:26 PM
® | chromedriver.exe 5/23/20141:22 PM Application 6,098 KB
® 1 IEDriverServer.exe 5/23/2014 1:22 PM P C 2,342 KB
&) logdj-1.216. jar 5/23/2014 1:22PM Executable Jar File 486 KB
#| mysgl-connector-java-3.1.13-bin.jar 5/23/2014 1:22 PM Executable Jar File] KB

#4) logs — The folder contains a .txt file that stores the logging information upon each execution.

#5) testMaterial — The folder contains the actual test data that needs to be uploaded if any. This folder would
come into picture when we come across test scenarios where the user is required to upload files, documents,
pictures, reports etc.

#6) build.xml — The xml file is used by the “Ant Server” to automate the entire build process.

#7) log4j.xml — This xml file is used by a Java based utility named as “Log4j” to generate the execution logs.
Note: We would study more about the logs, user defined exceptions and Ant in detail in the upcoming tutorials.
So don’t panic if you get confused between the notions.

Now, as we move forward let us understand the phenomenon where we access the excel files and populate
the test data into our test scripts.

In order to comprehend the process easily, we would break down the process into the following steps.

Test Data Creation

Step 1: The first and the foremost step is to create the test data with which we would be executing the test
scripts. Considering the aforementioned test data format, let us create an excel file named as “TestScriptl”.
Furnish the values in the elements.

194

A B C D E F
1 Browser|UserID [Password|Elementl [Element2 |[Element3
ShrutiPas
2 Firefox |Shrutil23|s123 Valuel Value2 |Value3
3 Chrome |Test TestPass |Valued |Value5s Valueb
a

Step 2: The next step is to download a standard java based API/Library named as “Java excel Library” (jxI) to
be able to access the already created generic methods for Excel Manipulation.

Step 3: Create a generic excel reader class named as “ExcelReader.java”. Copy the below code in the
ExcelReader.java.

1 package Utilities;

2 import java.io.File;

3 import java.io.|IOException;

4 import java.util.Hashtable;

5 import jxI.Sheet;

6 import jxI.Workbook;

7 import jxl.read.biff.BiffException;

8

9 /**

10 * This is a utility class created to read the excel test data file before performing the test steps.

11 * This class loads the excel file and
12 * reads its column entries.

13 *

14 */

15

16 public class ExcelReader {

17 [**

18 * The worksheet to read in Excel file
19 */

20

21 public static Sheet wrksheet;

22 [**

23 * The Excel file to read

24 */

25

26 public static Workbook wrkbook = null;
27 [**

195

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

* Store the column data
*/

public static Hashtable<String, Integer> dict = new Hashtable<String, Integer>();

/**

* Create a Constructor

*

* @param ExcelSheetPath
* @throws BiffException

* @throws WeblivException
*/

public ExcelReader(String ExcelSheetPath) throws IOException, BiffException {

/I Initialize

try {
wrkbook = Workbook.getWorkbook(new File(ExcelSheetPath));

wrksheet = wrkbook.getSheet(""Sheet1");
} catch (IOException e) {

throw newlOException();

}

/**

* Returns the Number of Rows

*

* @return Rows
*/

public static int RowCount() {
return wrksheet.getRows();

}

/**

* Returns the Cell value by taking row and Column values as argument
*

* @param column

* @param row
* @return Cell contents

*/

196

67 public static String ReadCell(int column, int row) {

68 returnwrksheet.getCell(column, row).getContents();
69 }

70 [**

71 * Create Column Dictionary to hold all the Column Names

72 */

73 public static void ColumnDictionary() {

74 /I Iterate through all the columns in the Excel sheet and store the
75 // value in Hashtable

76 for (int col = 0; col < wrksheet.getColumns(); col++) {
77 dict.put(ReadCell(col, 0), col);

78 }

79 }

80 [**

81 * Read Column Names

82 *

83 * @param colName

84 * @return value

85 */

86

87 public static int GetCell(String colName) {

88 try {

89 int value;

90 value = ((Integer) dict.get(colName)).intValue();
91 returnvalue;

92 } catch(NullPointerException €) {

93 return(0);

94 }

95 }

96 }

Step 4: Create a generic class —“CommonMethods.java”. Create a common method within the class that would
read the cells from the excel sheet using the methods implemented in ExcelReader.java.

l /**

2 * Read the test data from excel file

3 *

4 * @param data The TestData data object

5%/

6

7 public void readExcelData (TestData data) {

197

8 ArrayList<String> browser = new ArrayList<String>();

9 ArrayList<String> username = new ArrayList<String>();

10 ArrayList<String> password = new ArrayList<String>();
11 ArrayList<String> elementl = new ArrayList<String>();

12 ArrayList<String> element2 = new ArrayList<String>();

13 ArrayList<String> element3 = new ArrayList<String>();

14

15 /I Get the data from excel file

16 for (int rowCnt = 1; rowCnt < ExcelReader.RowCount(); rowCnt++) {

17 browser.add(ExcelReader.ReadCell(ExcelReader.GetCell("Browser"), rowCnt));
18 username.add(ExcelReader.ReadCell(ExcelReader.GetCell("User ID™), rowCnt));

19 password.add(ExcelReader.ReadCell(ExcelReader.GetCell("Password"), rowCnt));
20 elementl.add(ExcelReader.ReadCell(ExcelReader.GetCell("Element1"), rowCnt));
21 element2.add(ExcelReader.ReadCell(ExcelReader.GetCell("Element2"), rowCnt));
22 element3.add(ExcelReader.ReadCell(ExcelReader.GetCell("Element3"), rowCnt));

23 }

24 data.setBrowser(browser);

25 data.setLoginUser(username);

26 data.setPassword(password);

27 data.setElementl(elementl);

28 data.setElement2(element2);

29 data.setElement3(element3);

30 }

Step 5: Create a new java class named as “TestData.java”. This class would act as a getter and setter for excel
data. Copy and paste the following code in the TestData.java class.
1 package Utilities.dataSetters;

2 import java.util. ArrayList;

3 public class TestData {

4 private ArrayList<String> loginUser = null;

5 private ArrayList<String> password = null;

6 private ArrayList<String> browser = null;

7 private ArrayList<String> elementl = null;

8 private ArrayList<String> element2 = null,

9 private ArrayList<String> element3 = null;

10 [**

11 * @return loginUser

12 */

13 public ArrayList<String> getLoginUser() {
14 return loginUser;

198

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

}

/**

* @param loginUser

*/

public void setLoginUser(ArrayList<String> loginUser) {
this.loginUser = loginUser;

}

/**

* @return password

*/

public ArrayList<String> getPassword() {
return password;

}

/**

* @param password

*/

public void setPassword(ArrayList<String> password) {
this.password = password;

}

/**

* @return browser

*/

public ArrayList<String> getBrowser() {
return browser;

}

/**

* @param browser

*/

public void setBrowser(ArrayList<String> browser) {
this.browser = browser;

by

/**

* @return elementl

*/

public ArrayList<String> getElement1() {
return elementl;

¥

/**

* @param elementl

199

54 */
55 public void setElement1(ArrayList<String> elementl) {

56 this.elementl = elementl;

57 }

58 [**

59 * @return element2

60 */

61 public ArrayList<String> getElement2() {
62 return element2;

63 }

64 [**

65 * @param element2

66 */

67 public void setElement2(ArrayList<String> element2) {
68 this.element2 = element2;

69 }

70 [**

71 * @return element3

72 */

73 public ArrayList<String> getElement3() {
74 return element3;

75 }

76 [**

77 * @param element3

78 */

79 public void setElement3(ArrayList<String> element3) {
80 this.element3 = element3;

81 }

82}

Step 6: The next step is to create instances of “TestData.java” and “CommonMethods.java” java classes within
the test script in order to access and populate the test data. Refer the below code snippet for object initialization,
reading excel data and populating the values wherever required.

1 // Create Objects

2 public ExcelReader excelReaderObyj;

3 CommonMethods commonMethodobj = new CommonMethods();

4 TestData td = new TestData();

5

6 // Load the excel file for testing

7 excelReaderObj = new ExcelReader(Path of the excel);
8

200

9 /I Load the Excel Sheet Col in to Dictionary for use in test cases
10 excelReaderObj.ColumnDictionary();

11

12 /I Get the data from excel file

13 commonMethodobj.readExcelData (td);
14

15 /I Populate the username
16 driver.findElement(By.id("idofElement™)).sendKeys(data.getLoginUser().get(0));

Therefore using the instance of testData.java class in conjunction with getters, any test data value can be

populated within the script.
Conclusion:

The tutorial mainly revolved around the notions like Framework Creation and Accessing test data from the
excels. We made you acquainted with the Framework creation strategy using a sample project. We briefly laid
light on the various components and aspects of our framework.

In order to access the test data stored in the external data source, we used a java based API — jxl. We also
created the sample code for reading and populating the excel data into the testscripts.

Next Tutorial #22: In the next tutorial, we would base our tutorial on the concepts of generics and their
accessibility mechanism. We would create a few sample generic methods and then access them within the test
scripts. We would also introduce you with the concept of Testsuite and the sample code development.

201

http://www.softwaretestinghelp.com/creating-generics-and-testsuites-selenium-tutorial-22/

Tutorial #22 — Creating Generics and Testsuite

Creating Generics and Testsuites — Selenium Tutorial #22

In the previous tutorial, we started off with the representation of the sample project hierarchy and various
framework components. We also discussed about the data source — “excels” used to store the test data and their
excel manipulations. We also discussed about the new strategies and resources to mature our framework.

Now we are moving ahead with advanced topics in this Selenium Training Series. In this session, we would

take the opportunity to discuss two important concepts that plays an important role to mature the framework.
We would discuss the concept of Generics and reusability aspects. We would also discuss about creation
and significance of Test suite.

For better understanding we would accompany the concepts with adequate examples and sample code.
Generics

By the literal notion, a generic is something that can act as a descriptive of an entire group or classes.
While automating applications, we come across various end to end scenarios. An end to end scenario may
consist of several trivial functionality. Thus, many of these functionality can act as common functionality to
more than one test script with slight or almost no modifications.

Hence, it is advisable to create a generic class consisting of methods that can be claimed as common and can be
shared among multiple test scripts instead of implementing the same code again and again for multiple test
scripts.

Take a note that generics also introduce the power of reusability in our framework. Reusability reduces time
taken for code, errors, bugs, maintenance etc. exceptionally.

Type of Generics

#1) Application Specific

The meager functionality belonging to application under test can become a part of the Application Specific
generics. Take the Login Functionality for instance. Login is one such functionality that can be a fragment of
almost all the test scripts. Thus, instead of writing the login code all over again in the test scripts, we would
create a common method in the generic class and call it wherever needed.

#2) Framework Specific

Aside from Application specific generics, we may have common methods which do not directly relate with the
application under test but are part of the chosen framework. Consider an Excel reading functionality when we
have employed Test Data Driven Framework. It would make no sense if we would write the code for reading

202

http://www.softwaretestinghelp.com/selenium-framework-design-selenium-tutorial-21/
http://www.softwaretestinghelp.com/selenium-framework-design-selenium-tutorial-21/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

excels again and again in all the test scripts. Therefore, we induce the code once in the generic class and make a
call to it whenever required.

Creation of Generic Class
User is leveraged to create as many generic classes as he/she desires based on the modularity infused.

Let us understand the concept of generic by creating one.

Step 1: Create a new java class “CommonMethods.java” that would act as a generic class consisting of
common methods preferably in the package other than where test scripts reside.

Step 2: The next step is to copy and paste the below code in the “CommonMethods.java” generic class. Number
of common methods can be implemented inside the periphery of this class. Below is the code snippet for login
functionality.

1 /**

2 * Login the Test application

3 *

4 * @param username

5 * @param password

6 */

7 public void login(String username, String password) {

8try {

9 /] Enter User Name

10 WebElement userName = driver.findElement(By.id("loginID™));

11 userName.clear();

12 userName.sendKeys(username);

13 // Enter Password

14 WebElement passWord = driver.findElement(By.id("Password"));

15 passWord.clear();

16 passWord.sendKeys(password);

17 /I Click on the Sign In Button

18 WebElement signin = driver.findElement(By.id("'Signin_button"));

19 signin.click();

20 driver.manage().window().maximize();

21 } catch (Exception e) {

22 e.printStackTrace();

23}

24}

Take a note that the aforementioned method is a parameterized method. Thus, the same method can be used to
test the login functionality with different sets of test data.

203

Step 3: The next step is to call the common method within the test script. The process is a two step process.
First we create the instance of the generic class within the test class and then we call the common method on the
created instance by passing the required arguments. In the code fragment below, we created an instance of
“TestScriptl.java” class and called the login () method to login the application.

1 /I Create Object of the generic class

2 toolsObj = new Tools();

3 /1 Login the test application by calling the common method

4 preTestObj.login(“‘username”, “password”);

Take a mention that the above code can be placed anywhere inside the test class. User can place the code in the
setup () method or in the test () method.

Testsuite

Test suite is an assortment of more than one test script grouped together for execution purpose. Thus, test suite
executes the number of specified test scripts unattended. Test suite has the capability to cite the test scripts to be
executed automatically; all that is required from the user is to mark an entry each for the individual test script
within the test suite. The entry is supposed to be the “class name” of the test script with “.class” extension or

simply the compiled form of our java class.

Below is the sample Test suite created in java. Take a note that Test suite is a java based class that belongs to
the family of JUnit. Thus, you may encounter several JUnit annotations in the code.

java.lang.Object
junit.framework

TestSuite

!

Test

extends

Code Snippet

1 package com.axway.webliv.tests;
2 import org.junit. AfterClass;
3 import org.junit.BeforeClass;
4 import org.junit.runner.JUnitCore;
5 import org.junit.runner.Result;
6 import org.junit.runner.RunWith;
7 import org.junit.runner.notification.Failure;
8 import org.junit.runners.Suite;
9 import com.axway.webliv.tests.MetaData.*;
204

10

11 @RunWith(Suite.class)

12 @Suite.SuiteClasses({

13

14 ChangeStatusBinarySphereTest.class,
15 ChangeStatusRestrictionTest.class,
ChangeStatusDocSphereTest.class

16

17}

18

19 public class TestSuite {

20 [**

21 * Setup method to set system properties
22 */

23 @BeforeClass
24 public static void Setup() {

25 }

26 [**

27 * @param args

28 */

29 public static void main(String[] args) {

30 Result result = JUnitCore.runClasses(TestSuite.class);

31 System.out.printin("TEST CASES RUN: " + result.getRunCount());
32 System.out.printin("TEST CASES FAILED: " + result.getFailureCount());
33 for (Failure failure : result.getFailures()) {

34 System.out.printin("\nTEST NAME: " + failure.getTestHeader());
35 System.out.printin("\nERROR: " + failure.getMessage() + "\n");
36 System.out.printin(failure.getTrace());

37 System.exit(1);

38 }

39 }

40 [**

41 * Report test results

42 */

43 @AfterClass
44 public static void TearDown() {

45 %}
46 }

Code Walk-Through

A test suite is none other than a simple JUnit class having setup() and teardown() methods; the one’s we
discussed at length in our preceding tutorials. The only remarkable difference lies in its competence to execute
more than one test script in a single go.

Import Statements
205

1 import org.junit.AfterClass;

2 import org.junit.BeforeClass;

3 import org.junit.runner.JUnitCore;

4 import org.junit.runner.Result;

5 import org.junit.runner.RunWith;

6 import org.junit.runner.notification.Failure;

7 import org.junit.runners.Suite;
The above import statements are embedded in the class to be able to use various annotations provided by the
JUnit.

import org.junit.runner.JUnitCore;

import org.junit.runner.RunWith;

import org.junit.runners.Suite;

The above statements possess the underlying architecture to execute the test suite consisting of multiple test
classes.

import org.junit.runner.Result;
The import statement allows the user to store the test execution statuses and their manipulations.

import org.junit.AfterClass;

import org.junit.BeforeClass;

These import statements are used to identify and annotate setup() and teardown() methods. The setup() method
annotated with BeforeClass instructs the program control to execute the method before each of the test script
execution. Like setup(), teardown() method annotated with AfterClass tells the program control to execute the
method after each of the test script execution.

Class Entry

1 @RunWith(Suite.class)

2 @Suite.SuiteClasses({

3 ChangeStatusBinarySphereTest.class,

4 ChangeStatusRestrictionTest.class,

5 ChangeStatusDocSphereTest.class,

6 1

This section of the class allows the user to mark the entries of the test script to be executed in the next run.

Remember the entries are marked with ““.class” extension i.e. in their compiled formats.

Execution —main ()

1 public static void main(String[] args) {

2 Result result = JUnitCore.runClasses(TestSuite.class);

3 System.out.printin("TEST CASES RUN: " + result.getRunCount());

4 System.out.printin("TEST CASES FAILED: " + result.getFailureCount());

206

5 for (Failure failure : result.getFailures()) {

6 System.out.printin("\nTEST NAME: " + failure.getTestHeader());
7 System.out.printin("\nERROR: " + failure.getMessage() + "\n");
8 System.out.printIn(failure.getTrace());

9 System.exit(1);

10}

11}

This part of the code deals with the execution. The program execution always initiates from the main().

The runClasses method of JUnitCore class is used to execute the test suite. The “Result class” and its methods
are used to determine the execution status in terms of Passed and Failed test cases.

Thus, user is leveraged to play around with the test suite class to be able to suffice his/her requirements.

Conclusion

In this tutorial, we tried to make you acquainted with the concept of generics and common methods. We also
discussed the benefits we get out generics like reusability. We also shared the practical approaches towards
creation of generics and their accessibility.

Here are the cruxes of this article:

o Generic is something that can act as a descriptive of an entire group or classes. Generic in our
framework is a class that is solely consists of methods those can be shared across multiple test classes.

o Generics can be classified into two categories:

« Application Specific
o Framework Specific

« Asimple java class can be created to act as a Generic. Number of common methods can be implemented
inside the generic class. These methods can be parameterized methods.

e The common methods can be accessed by calling them on the instance of generic class within the test
scripts.

o Test suite is an assortment of more than one test script grouped together for execution purpose. Thus,
test suite executes the number of specified test scripts unattended.

e A test suite is none other than a simple JUnit class having setup() and teardown() methods; the one’s we
discussed at length in our preceding tutorials. The only remarkable difference lies in its competence to
execute more than one test script in a single go.

Next Tutorial #23: Going forward in the next tutorial we would study about yet another tool for automating
the entire build process. Thus, we would discuss “Ant” in the next tutorial at length. We would discuss
about the need of an hour to use a build tool in Test Automation. We would slide down to the deeper sections

where we would define the project dependencies and create build.xml file.

207

http://www.softwaretestinghelp.com/apache-ant-selenium-tutorial-23/

Note for the Readers — As we have already covered the major part of framework in this and the previous few
tutorials, readers can start exercising these concepts and can come up with their own customized framework.

208

Tutorial #23 — Using Apache ANT

Apache ANT — a Tool for Automating Software Build Processes and its
Importance in Testing — Selenium Tutorial #23

In the last tutorial, we tried to make you acquainted with the concept of generics and common methods. We also
discussed the benefits we get out of generics like reusability. We also shared the practical approaches towards
creation of generics and their accessibility.

In the current tutorial in this Selenium automation series, we would shed light on a build tool named as
“Apache Ant”. We would broadly discuss its applicability and importance besides the practical approach.

Take a note that the tutorial is limited to testing aspects of using Apache Ant.

Apache Ant is a very popular and conventional build tool of our times. Ant is an open source java based build
tool provided by Apache Software Foundation freely distributed under GNU license. Apache Ant plays a

significant role in developer’s as well as Tester’s day to day work schedule. The tool has immense power to
build the development code into deployment utilities.

Ant is a tool that automates the software building process. Ant is not just limited to compilation of code,
rather packaging, testing and a lot more can be achieved in some simple steps.

The tool works on the principle of targets and dependencies defined in the XML files. Ant libraries are used to
build the applications. The libraries have a set of defined tasks to archive, compile, execute, document, deploy,
and test and many more targets. Moreover, Ant allows the user to create his/her own tasks by implementing
their own libraries.

Ant is primarily used with Java Applications but it can still be used for applications built on other languages
depending on the extended support.

The most important aspect of using Ant is that it doesn’t demands another set of code to be written in order to
build the application, rather the entire process is defined by targets which are none other than XML elements.

Apache Ant Benefits

o [Ease of Use — The tool provides a wide range of tasks that almost fulfills all the build requirements of
the user.

o Platform Independent — Ant is written in Java thus is a platform independent build tool. The only
requirement for the tool is JDK.

o Extensibility — As the tool is written in Java and the source code is freely available, user is leveraged
with the benefit to extend the tool’s capabilities by writing java code for adding task in Ant Libs.

Apache Ant Features
209

http://www.softwaretestinghelp.com/creating-generics-and-testsuites-selenium-tutorial-22/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

o Can compile java based applications

o Can create Java Doc

o Can create war, jar, zip, tar files

« Can copy files to at different locations

o Can delete or move files

e Can send Emails to the stakeholders

e Supports Junit 3, Junit 4, TestNG etc.

e Can convert XML based test reports to HTML reports

« Can make directories

e Can check out the code from version control system (SVN, GIT, CVS etc).

o Can execute test scripts and test suites
Environment Setup

Let us demonstrate the entire setup process step by step.

Step 1: Apache Ant Download
The first and the foremost step is to download the zipped folder of Apache Ant latest version from the

repository. The distribution is available at “http://ant.apache.org/bindownload.cqi”.

Currently, Apache Ant 1.9.4 is the best avaiable version, see the release notes.

Ant 1.9.4 was released on 05-May-2014 and may not be available on all mirrors for a few days.
Tar files in the distnbution contamn long file names, and may require gnu tar to do the extraction.

Download the
zip

* .zaz.baz archlve apache-an LL‘LU 'D_.m_juz _L .___1 ._*_4:512 (MDS)

Step 2: Extract folder and Set Environment Variables
Extract the zipped folder at any desired location onto local file system.

Prior to setting up environment for Ant, it is required to install and set JDK on to your system. | am assuming
that the JDK is already set and installed, Thus moving forward with the Ant Setup.

Create an environment variable for “ANT _HOME” and set the variable’s value to the location of Ant folder.
Refer the following screenshot for the same.

210

http://ant.apache.org/bindownload.cgi

18 » Control Panel » System and Security b Svstem |42 M Search Control Pane

- - System Properties
File Edit View Tools Help Variables %
Comp\.(eere‘HaWn Advanced | Sysem Protection | Remote = -
Control Panel Home o o i
You must be logged on as an Administrator to make most of these changes. y vesave |
% Device Manager Fimpance | A - -
i Edit User Variable ﬁ
% Remote settings Visual effects, processor scheduing. memory usage, and vitual memory -—
¥ System protection
Settings Variable name: ANT_HOME
% Advanced system settings S amc =
User Profies Variable value: C:\Work\Softwares\apache-ant-1.9.2-bin\a.
Desktop settings related to your logon E [c)
 Setigs.._ T T
Variable Value =
Startup and Recovery ComSpec C:\windows\system32\and.exe
System stadup. system falure, and debugging information FP_NO_HOST C... NO
M2_HOME C:\Softwares\apache maven-3.2.2
Selings. | NUMEER OF P... 4 ¥
New. Edit... Delete
ok [Comce

)3

Edit the Path variable to append the location of the bin folder i.e. compiler location.

User can also verify for the successful Ant installation by typing in the “ant -version” command in the
command prompt. The user would be able to see the following screen for the successful installation.

CA\windows\system32\cmd.exe

icrosoft Windows [Version 6.1.7601]
Copyright <(c> 2009 Microsoft Corporation.

All rights reserved.

C:\Users\shrshrivastava>ant -version
Apache Ant(TM) version 1.9.2 conmpiled on July 8 2813

Step 3: Download and Extract Junit Jar
Download the latest version of Junit jar from “https://github.com/junit-team/junit/wiki/Download-and-Install”

and configure the project’s build path in eclipse and add the jar as external library. Refer the following
illustration.

211

http://github.com/junit-team/junit/wiki/Download-and-Install

(8] Properties for Weblev_Automated Tests

Resource

Budders

Jave Build Path
Java Code Style
Java Compdler

Java Edetor

Javadoc Location
Project Facets
Project References
Refactonng Hastory

Run/Debug Settings

Subversion
Task Repostory
Task Tags
Vabdation

Wik Text

Java Build Path

™ Source | 13 Projects | B Libraries
JARs and class folders on the budd path:

» Order and Export

Add JARs...

l Add External JARs...]

Add Vanable...
Add Library...
Add Class Folder..

Add Bxternal Class Folder...

Ede...

Remove

Migrate JAR Fie...

| Oi[d Cancel

Thus, no other installation is required to use Apache Ant in collaboration with Junit and Selenium WebDriver to
build, execute and report the test scripts.

Note: Take a note to necessarily add “ant-junit4.jar” jar file that can be found within the library folder of the

Ant’s software distribution.

Sample Build.xml

The next step is to create the project’s build file. Build file is nothing but a collection of xml elements. Worth
mentioning that one build file can relate to one and only one project i.e. one build file per project or vice versa.

Build file is customarily located at the project’s root/base folder but the user is leveraged to select the build’s
location driven by his/her wish. Moreover the user is free to rename the build file if he/she desires.

Each of the build file must have one project and at least one target element. Refer the sample build.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <project name="Learning_Selenium" default="junitReport"basedir=".">

3

© 00 N o o1 b

10

<property name="src" value="./src" />
<property name="lib" value="./lib" />
<property name="bin" value="./bin" />
<property name="report" value="./report" />

<pathelement location="${bin}" />
<fileset dir="${lib}">

<property name="test.dir" value="./src/com/tests"/>
<path id="Learning_Selenium.classpath">

212

11
12

13
14

15
16
17
18
19
20
21
22

23
24

25
26

27
28

2

30

31
32

33
34

35
36

37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

<include name="**/* jar" />

</fileset>
</path>
<echo message=" ">
<echo message="-------------------- Selenium Learning Tests ">
<echo message=" ">

<target name="init" description="Delete the binary folder and create it again">
<echo message=""---------- Delete the binary folder and create it again---------- />
<delete dir="${bin}" />
<I-- Create the time stamp -->
<tstamp>

<format property="lastUpdated"pattern="dd-MM-yyyy HH:mm;:ss" />

</tstamp>
<I-- Create the build directory structure used by compile -->
<mkdir dir="${bin}" />

</target>

<target name="compile™ depends="init"description="Compile the source files">
<echo message=""---------- Compile the source files---------- />

<javac source="1.7" srcdir="${src}"fork="true" destdir="${bin}" includeantruntime="false"debug="true" debuglevel="lin
9 es,vars,source">

<classpathrefid="Learning_Selenium.classpath" />
</javac>
</target>
<target name="exec" depends="compile"description="Launch the test suite">
<echo message=""---------- Launch the test suite---------- />
<delete dir="${report}" />
<mkdir dir="${report}" /

<mkdir dir="${report}/xml" />
<junit fork="yes"printsummary="withOutAndErr" haltonfailure="no">
<classpathrefid="Learning_Selenium.classpath™ />
<formatter type="xml" />
<batchtest fork="yes"todir="${report}/xml">
<fileset dir="${src}"includes="**/com/TestSuite.java" />
</batchtest>
</junit>
<[target>
<target name="junitReport" depends="exec"description="Generate the test report">
<echo message=""---------- Generate the test report---------- />
<junitreport todir="${report}">
<fileset dir="${report}/xml">
<include name="TEST-*.xml" />
</fileset>
<report format="frames"todir="${report}/ntml">
<param name="TITLE"expression="Selenium_Learning_Report" />

213

54 </report>
55 </junitreport>
56 </target>

57 <Iproject>

Explanation of Build.xml

The project element is fundamentally consists of 3 attributes:

<project name="“Learning Selenium” default="junitReport”basedir=".">
Each of the attribute has a “Key-Value pair” structure.

e Name — The value of the name attribute represents the name of the project. Thus in our case, the
project’s name is “Learning Selenium”.

o Default — The value of the default attribute represents the compulsory target for the build.xml. A
build.xml file can have any number of targets. Thus this field represents the mandatory target amongst
all.

« Basedir — Represents the root folder or base directory of the project. Under this directory, there may be
several other folders like src, lib, bin etc.

<target name= “init” description="Delete the binary folder and create it again’>

All the tasks in the Ant build file are defined under Target elements. Each Target element corresponds to a
particular task or goal. A single target can consists of multiple tasks if needed. Like | mentioned earlier, the user
is credited to create more than one target within a particular build file.

In the above xml code, we have created targets for the following goals:

1. Deleting and creating directories

2. Compiling the code

3. Executing the test classes

4. Generating the test reports
<target name= “exec” depends=“compile” description="“Launch the test suite”>
Sometimes it is required to execute a particular target only when some other target is executed successfully.
Take a note that the target are executed sequentially i.e. in order of sequence they are mentioned in the build
file. Also I would like to mention that a particular target is executed once and only once for the current build
execution. Thus, when the user is required to generate dependency between the target, he/she has to use depends
attribute. The value of the “depends” attribute shall be the name of the target on which it depends. A target can
depend on more than one target as well.

Built-in Tasks

Ant build file provides varieties of tasks. Few of them are discussed below:

214

File Tasks — File task are self explanatory.
<C0py>

<concat>

<delete>

<get>

<mkdir>

<move>

© g s~ NP

7. <replace>
Compile Tasks
1. <javac>— Compiles source files within the JVM
2. <jspc>— Runs jsp compiler
3. <rmic>— Runs rmic compiler
Archive Tasks
1. <zip>, <unzip> — Creates a zipped folder
2. <jar>, <unjar> — Creates a jar file
3. <war>, <unwar> — Creates a war file for deployment
Testing Tasks
1. <junit>— Runs JUnit testing framework
2. <junitreport>— Generates the test report by converting JUnit generated XML test reports.
Property Tasks
1. <dirname> — Sets the property
2. <loadfile> — Loads a file into property
3. <propertyfile> — Creates a new property file
Misc. Tasks
1. <echo> — Echoes the text message to be printed either on the console or written within an external file.
2. <javadoc> — Generates the java based documentation using javadoc tool.
3. <sql>— Establishes a JDBC connection and hits dash of SQL commands.

Execution

The easiest section is to execute the test suite with Ant. To execute the test suite with Ant, Right click on
“build.xml” and select “Run As -> Ant Build” option. Thus, the option hits the execution. Refer the following

figure for the same.

215

B\ Ref
=\ JRE
L exc
& hbr
L log

chr

L3 log Ba

2 Test

E'- E

New

Open
Open With
Show In

Copy

Copy Qualified Name
Paste

Delete

Remove from Context

Mark as Landmark Ctrls

Build Path
Refactor

Import...
Export...

Refresh
Assign Working Sets...

Open Javadoc Wizard...
Debug As

Run As I

After the entire execution is completed, Ant generates a test execution report for review inside the “Report”

folder.

Team

Ctrl« Alt

F3
»

Alt+Shift« W »

Ctri«C

CtrieV
Delete

«Shift+ Down

Alt+ Shift+Up

>
Alt+Shift«T »

F5

main(String[] args) {
* JUnitCore.runClosses)
ntin("TEST CASES RUN: '
ntln("TEST CASES FAILE!L
pilure : result.getFail
Lprintin("\nTEST NAME:
Lprintln("\nERROR: “ +
Lprintin(failure.getTri
t(1);

needs to be performed

TearDown() {

m

Console &2

% 1 AntBuild I

% 2 Ant Build...

The execution can also be initiated outside the eclipse by hitting the command on the command prompt. User is

expected to navigate to the directory where build.xml is kept and type “ant”.

Conclusion

In this tutorial, we laid emphasis on useful information related to Ant, its installation and various Ant tasks. Our
motive was to at least introduce you with the basic conceptual picture and its importance as a tool all together

with respect to testing. Hence, we discussed build.xml in detail describing the various components.

Briefing in the end, Ant is a tool that automates the software building process. Ant is not just limited to
compilation of code, rather packaging, testing and a lot more can be achieved in some simple steps.

Next Tutorial #24: We will learn about Maven — a build automation tool. Maven simplifies the code handling

and process of building the project. Most of the projects follow maven structure. We will learn how to use

Maven and Maven project setup for Selenium.

216

http://www.softwaretestinghelp.com/maven-project-setup-for-selenium-selenium-tutorial-24/

Tutorial #24 — Setting up Selenium Maven Project

Use of Maven Build Automation Tool and Maven Project Setup for Selenium
— Selenium Tutorial #24

In our last Selenium tutorial we learned a build tool named as “Apache Ant”. We also broadly discussed its
applicability and importance besides the practical approach.

In this Selenium Testing tutorial we will learn Maven — a build automation tool which is distributed under
Apache Software Foundation. It is mainly used for java projects. It makes build consistent with other project.
Maven is also used to manage the dependencies. For example if you are using selenium version 2.35 and any
later point of time you have to use some other version, then same can be managed easily by Maven. You will
find more examples of this later in this chapter. It works very effectively when there is huge number of Jar files

with different versions.
What is a build tool?

Build tool is used to setup everything which is required to run your java code independently. This can be
applied to your entire java project. It generates source code, compiling code, packaging code to a jar etc. Maven

provides a common platform to perform these activities which makes programmer’s life easier while handling

huge project.

Maven provides pom.xml which is the core to any project. This is the configuration file where all required
information’s are kept. Many of the IDEs (Integrated Development Environments) are available which makes it
easy to use. IDEs are available for tools like Eclipse , NetBeans, IntelliJ etc.

Maven stores all project jars. Library jar are in place called repository which could be central, local or remote
repository. Maven downloads the dependency jar from central repository. Most of the commonly used libraries
are available in http://repol.maven.org/maven2/.

Downloaded libraries are stored in local repository called m2. Maven uses the libraries available in m2 folder
and if any new dependency added then maven downloads from central repository to local repository. If libraries
are not available in central repository then maven looks for remote repository. User has to configure the remote
repository in pom.xml to download from remote repository.

Below is the example of configuring a remote repository to pom.xml file. Provide id and url of the repository

where libraries are stored.

1 <repositories>

2 <repository>

3 <id>libraryld</id>

4 <url>http://comanyrepositryld</url>

5 </repository>
6 </repositories>

General Phrases used in Maven:

217

http://www.softwaretestinghelp.com/apache-ant-selenium-tutorial-23/
http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://repo1.maven.org/maven2/

groupld: Generally groupld refers to domain id. For best practices company name is used as groupld. It
identifies the project uniquely.

artifactld: It is basically the name of the Jar without version.

version: This tag is used to create a version of the project.

Local repository: Maven downloads all the required dependencies and stores in local repository called
m2. More details regarding the same would be shared in the next topic.

Build Life Cycle:
Basic maven phases are used as below.

clean: deletes all artifacts and targets which are created already.

compile: used to compile the source code of the project.

test: test the compiled code and these tests do not require to be packaged or deployed.
package: package is used to convert your project into a jar or war etc.

install: install the package into local repository for use of other project.

Maven Setup:

Step 1: To setup Maven, download the maven’s latest version form Apache depending upon different OS.

Step 2: Unzip the folder and save it on the local disk.

Step 3: Create environment variable for MAVEN_HOME. Follow the below step:

Navigate to System Properties ->Advanced System Setting->Environment Variable ->System Variable ->New -
>Add path of Maven folder

218

IS

Environment Variables m

User variables for Aman

Variable Value
TEMP %USERPROFILE % \AppData\Local\Temp
T™P %USERPROFILE % \AppData'Local\Temp

System variables
Variable Value =
ComSpec C:\Windows\system32\cmd.exe L4
configsetroot C:\Windows\ConfigSetRoot
FP_NO_HOST_C... NO
NUMBER_OF_P... 4 >

(o) (e) (Cosee)

New System Variable M

Variable name: MAVEN;HCME 7

Variable value: D:\apache-mavne-3.03

Lok J[concel |

Step 4: Edit path variable and provide the bin folder path.

Edit System Variable (oS

Variable name: Path

Variable value: Utilities 1.3.6\;D:\apache-mavne-0.3.0\bir|

Lok [concel |

Step 5: Now verify the maven installation using command prompt and don’t forget to setup JAVA HOME
Use mvn —version to verify maven version and output comes like below.

219

2 rs\4008217179 >nun s
he Maven 3.0.3 {(»r1075438; 2011-082-28 23:01:89+8538)
»: D:Napache-maven-3.0.3\bin\..
: .72.8_45, vendor: Oracle Corporation
rogran Files\Java\jdk1.?7.8_45\jre

en_US, platform encoding: Cpl1252
s 7Y, version: "6.1", arch: "x86"Y, family: "windows"

Install maven IDE in Eclipse:
Maven provides IDE to integrate with eclipse. | am using eclipse Juno here.

Navigate to Help->Eclipse Marketplace-> Search maven ->Maven Integration for Eclipse ->INSTALL

]
Eclipse Marketplace ‘Q>

@] Eclipse Marketplace L

Select solutions to install, Press Finish to proceed with installation, e
Press the information button to see a detailed overview and a link to more information.
Search | Recent | Popular | jnstalied
e
Find: maven A All Markets v | | All Categories v |§°|
net.flexmojos.oss:flexmojos-maven-plugin (version S and 6) to Flash Builder. -

Supports Right-click..

| Install

Flexmoios Actionscript flex m2e

AA Maven Integration for Eclipse WTP (Juno) Share @

Maven Integration for Eclipse WTP (a.k.a m2e-wtp) aims at providing a tight
integration between Maven Integration for Eclipse (a.k.a m2e) and the Eclipse
Web...

Uninstall | m2e-wip maven wip mle o

= m2eclinee-witn - Maven Intearation for Felinee WTP (fra (1) 7

9 & b

Cancel

After installation you have to restart eclipse.

Then right click on pom.xml and verify all the options are available like below.
m2 1 Maven build Alt+Shift+X, M

2 Maven build...

3 Maven clean

4 Maven generate-sources

5 Maven install

R ARAR

6 Maven test

Run Configurations...

|

220

Create Maven project:

Step 1: Navigate to File- new-others-Maven-Maven Project-Click Next
m New e | (2] e

Select a wizard _—
Create a Maven Project f

Wizards:
' type filter text
> e JAXB -
» & JPA
4 > Maven
11, Checkout Maven Projects from SCM
¥4 Maven Module
2 Maven Project |
» (& Plug-in Development
» (& Remote System Explorer
b (&> Server
» & SQL Development
> & Tasks
b (& User Assistance

N =

Step 2: Check the Create a simple project and click Next
i8] New Maven Project —

New Maven project

® e
(B

Select project name and location

Create a simple project (skip archetype selection)

[Use default Workspace location

Location: C:\Users\WORKSPACE\com.tutonal.test\ v | B

i

["] Add project(s) to working set

Warking set v || More..

» Adyanced

@ [<Back [Net>]| Finish

221

Step 3: Provide Group Id and Artifact Id .You can change the version of Jar as per your wish. Here | am using

default name. Click Finish.

f@ New Maven Project

New Maven project
Configure project

Artifact
Group Id:

Packaging: jar
Name:
Descnption:
Parent Project
Group Id:
Artifact Id:

Version:

» Advanced

/3
(?)
&

-

«com.softwaretestinghelp.test:
Arifactld: com.softwaretestinghelp.selenium

Version: 0.0.1-SNAPSHOT -

m————————°

e IS | = |

!

Step 4: After finish you will find the project structure is created like below. pom.xml is created which is used to

download all dependencies.

4 '1'7‘1 com.tutorialPoint.selenium

. [src/main/java
(8 src/main/resources
(# src/test/java
(8 src/test/resources
=), JRE System Library [J25E-1.5
=), Maven Dependencies
& src
. (= target
[m] pomaxml

pom.xml file looks like below:

<project xmlIns="http://maven.apache.org/POM/4.0.0"xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-

instance"xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

2 <modelVersion>4.0.0</modelVersion>

3 <groupld>com.softwaretestinghelp.test</groupld>
4 <artifactld>com.softwaretestinghelp.selenium</artifactld>

5 <version>0.0.1-SNAPSHOT</version>

222

6 </project>
Step 5: Add dependencies for Selenium.
All selenium Maven artifacts are available in below central repository

http://repol.maven.org/maven2/orag/seleniumha/selenium/

Add following dependencies in pom.xml for selenium
1 <dependency>
2 <groupld>org.seleniumhg.selenium</groupld>

3 <artifactld>selenium-java</artifactld>
4 <version>2.41.0</version>

5 </dependency>
Similarly, following is the dependency for Junit :

1 <dependency>

2 <groupld>junit</groupld>

3 <artifactld>junit</artifactld>
4 <version>4.4</version>

5 </dependency>

If you want to add other third party jar then add those dependencies in pom.xml

Step 6: Final pom.xml will be like below:

1 <project xmlIns="http://maven.apache.org/POM/4.0.0"xmlins:xsi="http://mwww.w3.0rg/2001/XMLSchema-
instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

2 <modelVersion>4.0.0</modelVersion>

3 <groupld>com.softwaretestinghelp.test</groupld> <artifactld>com.softwaretestinghelp.selenium</artifactld>
4 <version>0.0.1-SNAPSHOT</version>

5 <dependencies>

6 <dependency>

7 <groupld>org.seleniumhg.selenium</groupld>

8 <artifactld>selenium-java</artifactld>

9 <version>2.41.0</version>

10 </dependency>

11 </dependencies>

12 </project>

Step 7: Maven will download all the dependency jars in to local repository called .m2.
M2 folder is basically inside Users->username->m2

All the jars will be placed in a folder called repository which is inside .m2 folder. Maven will create separate
folders for different version and different group id.

223

http://repo1.maven.org/maven2/org/seleniumhq/selenium/

Name

| .cache

1. cglib

. classworlds

. com

|, commons-cli

|, commons-codec
. commons-collections
. commons-io

|, commons-logging
. info

L io

L junit

. net

A org

. xalan

. xerces

. xml-apis

Step 8: If m2 folder does not populate in Maven dependencies, then you can populate those jars manually.

— Eclipse Windows ->Preference

Date modified Type
5/15/201311:09 PM File folder
2/2/2014 2:40 PM File folder
5/15/201311:10 PM File folder
2/2/2014 2:40 PM File folder
5/15/201311:11 PM File folder
2/2/2014 2:41 PM File folder
/2/2014 2:41 PM File folder
2/2/2014 2:42 PM File folder
2/2/2014 2:41 PM File folder
2/2/2014 2:52 PM File folder
2/2/2014 2:43 PM File folder
5/15/201311:10 PM File folder
2/2/2014 2:41 PM File folder
3/9/201411:32PM File folder
2/2/2014 2:41 PM File folder
2/2/2014 2:42 PM File folder
2/2/2014 2:41 PM File folder

— Navigate Java->Build Path->Classpath Variables

"“ SRS - S8 =
type filtes text Classpath Variables v NLE 1
:‘“‘ Adewublecmbcoddedtonpm«fuhmpﬂhlcmumdbddi\e’
7 mmdommumxmam s Non
> Data Management b By (for example, JRE_LIB, JRE_SRC, and JRE_SRCROOT
» Help wmmmm
o lastaliUpdate Oefined classpath varsbles:
o i & ECLIPSE_HOME (non moddiable) - Di\latest\eclipse C@i
4+ BuddPath 4 IRE_LIB (non modifiable, deprecated) - D:\Program Files\Jay e |
Classpath Varables (2 JRE_SRC (mon moddiable, deprecated) - (empty) \
s s 24 IRE_SRCROOT (non modiisble, deprecated) - (empty) || pemoe ||
. Code Style (26 JUNIT_HOME (non moddiable, deprecated) - Di\latest\ecip
. Compiler 25 M2_REPO (mon modifiable) - D:\Users\80021 7179\ m2\repo.
. Debug
. Editor
- Installed JREs
Nea
Properties Files Edace
» JavakE
- Java Perssstence
» JavaScnpt
» Myhyn
» Plug-in Development . m J ’
» Remote Systems
» Run/Debua
® T T

— Click New Button ->Define M2_REPO and provide the path of m2 folder.

224

Step 9: Upon successful setup you will find Maven Dependencies folder like below which will have the

required dependency jar for the project

4 :7‘] pkg.test

> §® src/main/java
(% src/main/resources
(# src/test/java

(8 src/test/resources

i = Maven Dependencies

b (= target
[m] pomxml

Build the Project:
Project can be built by both using IDE and command prompt.

Using IDE you have to right click on POM-Run As-Maven Build

Name: com.softwaretestinghelp.selenium
| Ej Main = JRé_ W Refresh By Soutce: w Environment | [Qommon-_
Base directory:
C:/Users/WORKSPACE/com . softwaretestinghelp. selenium
[Browse ﬂorkspace...J lBrowse File System... } [yar'wbks...]

[select.

Goals: clean install

Profiles:
| Offline || Update Snapshots
| Debug Output || Skip Tests Non-recursive
__ Resolve Workspace artifacts
&L_;: Threads
v Parameter Name Value Add...

Edit

Remove

Maven Runtime: | Embedded (3.04/1.4.120140328-1501) v | Configure...|

L Aeely [Revet |

Close

©,

Enter goals like clean install etc. and click Run.
Same can be done using command prompt. Navigate to project folder where pom.xml lies.

And use below commands to clean, compile and install

225

For clean: mvn clean

For compile: mvn compile

For Install: mvn install

Below is the info which is displayed when you clean any project and shows “BUILD SUCCESS”.

1 [INFO] Scanning for projects...
2 [INFQO]
3 [INFQO]
4 [INFQ] Building com.softwaretestinghelp.0.0.1-SNAPSHOT
5 [INFQO]
6 [INFQO]

[INFOQ] --- maven-clean-plugin:2.4.1:clean (default-clean) @ com.softwaretestinghelp ---[INFO] Deleting
C:\Users\rshwus\WORKSPACE\com.softwaretestinghelp\target

8 [INFO]
9 [INFO] BUILD SUCCESS
10 [INFO]

11 [INFO] Total time: 0.702s
12 [INFO] Finished at: Sat May 24 18:58:22 IST 2014

13 [INFO] Final Memory: 2M/15M
14 [INFO]
Conclusion:

Maven simplifies the code handling and process of building the project. Most of the projects follow maven
structure.

Download all dependencies provided the dependencies are available in maven central repository. If any of the
dependency is not available in maven central repository then you have to add repository path in pom.xml
explicitly.

There are many other build tools available in like ant. But it is better to use maven while dealing with different
versions and different dependencies. Maven even can manage the dependencies of dependencies. Other tools

may not provide such flexibility like maven. Please post your queries anything related to maven here.

Next Tutorial #25: In the upcoming tutorial, we would discuss about continuous integration tool known as

Hudson. We would study about its importance, role and benefits into Test Automation Framework. We would
look at the Hudson straight from the beginning, from its installation to its working.

226

http://www.softwaretestinghelp.com/hudson-continuous-integration-tool-selenium-tutorial-25/

Tutorial #25 — Using Hudson Continuous integration tool

Hudson — Importance and Benefits of this Continuous Integration Tool —
Selenium Tutorial #25

In the last two tutorials, we discussed about the two most important build tools — ANT and Maven. We
discussed about their significance and practical importance.

In the current Selenium online training tutorial, we would discuss about a continuous integration tool known
as Hudson. We would study about its importance and benefits that we get out of any continuous integration
tool. We would look at the Hudson straight from the beginning, from its installation to its advance settings.

Continuous Integration

Many a times, we end up working in a project where a large bunch of developers and testers are working
together on different modules. Developers and Testers work on their modules thereby developing executables.
These work products are then integrated at regular intervals. Thus, every time we create a development code, it
needs to be integrated, tested and built to ensure that the code developed doesn’t break or introduces errors or

defects.

This process of building and testing the development work integrated at regular intervals is known
as Continuous Integration (Cl). Continuous Integration lets you identify and address the defects or errors as
soon as possible in the development lifecycle i.e. closer to the time, they were introduced.

Source Control Polls Continuous
Management System Integration Tool .o tes Build

-

Fresh Commit
Generates Report

Sends Email

Continuous Integration system builds and tests the application as soon as the fresh/changed code is committed
to the Source Control Management system acronym as SCM. With its great benefits and impact over the
industries, it has become an integral part of Software Development life cycle and is mandatorily practiced.

Hudson — Continuous Integration Tool

Continuous Integration can be performed automatically. Hudson is one of the popularly known tools to perform
Continuous Integration. Hudson is a Java based open source Continuous Integration tool. Like any other
Continuous Integration tool, Hudson provides the teams to trigger builds and tests with any change in the
Source Control Management System.

227

http://www.softwaretestinghelp.com/apache-ant-selenium-tutorial-23/
http://www.softwaretestinghelp.com/maven-project-setup-for-selenium-selenium-tutorial-24/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Hudson supports a large range of tools and plugins.

Hudson:
e Supports SCM tools like CVS, Subversion (SVN), Git etc.
o Is capable of building ANT based projects, Maven based projects etc.
o Is capable of executing shell scripts and Windows batch commands

o Is capable of Sending reports, notifications etc via Email, SMS, Skype etc.
Hudson Installation

Pre-requisites
To be able to use Hudson, we need the following things to be in place before we get started:

e Source Code Repository (SVN/Git/CVS etc.)

e Build Script (Ant/Maven etc.)
Installation
Hudson can be easily installed on variety of environments. Hudson can be installed on both the Linux machine
and the windows machine. It is also distributed as a package specific to the OS type for different Linux flavors
thereby making the installation a few minute’s task. Hudson can be run as a standalone application or within the
Servlet Container. In this tutorial, we would explain the Hudson Installation on Windows machine. There are
two distinct approaches to install Hudson.

e Using WAR file
o Using Native Package
Native Packages are available for Ubuntu/Debian, Oracle Linux, Redhat/Fedora/CentOS and openSUSE.

For this tutorial, we would discuss installation by WAR file. Let us discuss the entire process step by step.
Step 1: Download the Hudson WAR file from the Hudson’s official website — “http://hudson-ci.org/”. Keep the
war file in the desired location in the local file system. This WAR file can be started directly via command
prompt or can be used in Servlet Container. The WAR is an executable file that has a Servlet Container

embedded in itself.

228

http://hudson-ci.org/

- 5 ¢ | o

- Meet Hudson.

Find out what
Hudson is and get
started.

AR

Use Hudson

See how to get more
out of Hudson.

| EXtend Hudson

Learn how to build

Hudson or extend

Hudson by writing
plugins.

- Download Hudson .war

Step 2: The next step is to initialize the Hudson web user interface. For this, we need to open command prompt

and go to the folder where Hudson war is kept.
e Type java -jar hudson-3.0.1.war —httpPort=8099

The above command would show that the Initial setup is required to be done on Hudson Dashboard. Refer the

below screen.

229

&N C:\windows\system32\cmd.exe - java -jar hudson-3.2.1.war --httpPort=8099 !,‘:' L

\Work\Sof twar Hudson>java ~jar hudson-3.2.1.war httpPort=8099
C:/Work/Sof twares/Hudson/hudson-3.2.1 .war
lar - /C-/Uork/?oftuavr"/Hud on/hudson-3.2.1.war
46 .136 :INFO: oejs. Server:jetty-8.1.7.v20120918
= U 46 ?36:INFO:o0ejw. Heblnffonf:quratxo :Extract jar:file:/C:/lork/|E
ISof twares/Hudson/hudson—-3.2.1.war?/ to C:\Users\shrshrivastava\.hudson\wvar\webap

P

2014-11-06 18:50:53.261:INFO:0ejw.StandardDe siptorProc or:NO JSP Support for
/, did not find org.apache.ja » rvlet. JspServlet

12014-11-86 18:50:53.355:INF0:0ejsh ntextHandle tarted o J.w.WebAppContext{
,file:/C:/Users/shrshrivastava/. hudson/wvar/webapp/2 . file:/ Work/Sof twares/Hud
son/hudson—-3.2.1 .war

2014-11-06 18:58:53.355:INFO:o0ejsh.ContextHandler:started o.e.j.w.WebAppContext{
,file:/C:/Users/shrshrivastava/.hudson/var/webapp/? . file:/C: llork/Sof tuares/Hud

2014 6:58:53 PM org.eclipse.hudson.HudsonServletContextListener contextl
itialized
Home directory: C:\Users\shrshrivastava\.hudson
ov B6, 2014 6:58:54 PM org.eclipse.hudson.security.HudsonSecurityManager load
Loading Security ..
2014 6:51:86 PM org.eclipse.hudson.HudsonServletContextListener contextl

=>

Initial setup required. Please go to the Hudson Dashhoard and complete the setup

2014-11-086 18:51:086.426:INFO:0ejsh.ContextHandler:started o.e.j.w.WebAppContext{
Lfile:/C:/Users/shrshrivastava/.hudson/war/uwebapp/> . file:/C: /Uork/ﬂoftuare s /Hud
son/hudson-3.2.1 . war

ov B6, 2014 6:51:86 PM hudson.util.CharacterEncodingFilter init

INFO: Character odingFilter initialized. DISABLE_FILTER: false FORCE_ENCODING:
false

2014-11-06 18:51:86.561:INFO:0ejs.AbstractConnector:Started SelectChannelConnect
»P0.0.90.0:8099

Note: It is advisable to start Hudson as a service on Windows or Linux machine.

Step 3: To be able to access the Hudson window, open your browser and launch Hudson.
e Type “http://localhost:8099/” — This will open hudson window.
(Click to enlarge image)

Hudson CI Server Initial Setup @

Core Compatibility Plugins

¢ maximum compa
that

Featured Plugins

Hudson QA tean

230

Step 4: Select the desired plugins and click on the Finish button. Please be patient as it is likely to take a few

minutes to install all the plugins.
Note: There are several options available to provide support for SCM. Check mark the SCM option, you wish to

use.

Featured Plugins

Following are featured plugins. They are tested and certified by Hudson QA team

Hudson CVS Plug-n 220
integrates Hudson w

. . 228

"1 Caoovy Ssppost Plugin 303
Hudson Mavend Plagin
This piug=-in adds Mavend support to Hudson. it adds a bwider to Freestyle Project o build maver 304
Hudson Maven3 SNAPSHOT Monstor 301

- Hudson SSH Slaves plugn

[302
Plugin allows you to manage siaves 5 ¢

. Kl 2310
This plugin provnndes support se ¢ 8% d a g%

Once, all the plugins have been installed, user can view the Hudson Dashboard.

€ > @ localhost 30
(8 Most Visited B3 Getting started Webliv... | | Webliv | | AxwayPMG 1.4 The Axway Portal O/ Shrivastava Sh

Hudgoo
& Newlob
5, Manage Hudson d Jobs Status
& eocole
f@ Build History
- Welcome to Hudson! Please sreate naw 1obs to get started.
Build Queue

No budds in the queue.

Builld Executor Status

Master 0/2
Idie

Hudson Configuration
Now that the Hudson Dashboard is ready, the next step is to configure the Hudson. Let us again discuss the
entire process in steps:

231

Step 1: To configure the Hudson, click on the “Manage Hudson” link displayed in the left menu.
Step 2: Click on the “Configure System” link in the next step. Refer the following screenshot.

e
(‘¢ JHudson

-

Man. Plugs s lassc Plugin Man £

p—— o 2
W Neeloh 4/ Manage Hudson
2 Manage Hudson
People §. You have data stored in an older format and/or unreadab
B Suid Hegtory Configure Security
| Configure Authentication and Authornzaton Strateg
B new view
o nfigure Sygtem
Build Queue ' y Conhgure global settings and paths
No builds in the queue. =
Q Reload Configuration from Digk
B " I E 1 Stat Discard all the loaded data \n memory and reload «
w modified config files directly on disk.
Master 0/2 Manaos Pliaing
Idle Add, remove, disable or enable pluging that can ex

Step 3: As soon as you click on the Configure system link, numerous sections for connection parameters would
be should. Add an entry to JDK as shown in the following figure. User needs to provide the name of the JDK

installation and the location where java is installed. More than one Java instances can be added.
JDK

JOK installations JOK
Name JAVA 1.8

JAVA_HOME 'C:/Program Files/Java/jdk1.8.0_0S
I Install automatically 0
Delete JOK
Add JDK

List of JOK insnalanions on this system

User can also install JDK automatically by checking a “Install automatically” checkbox.

Step 4: In the next step, add an entry to Ant as shown in the following figure. User needs to provide the name of
the Ant installation and the location where Ant is installed locally.

Ant

Ant installations Ant
Name ANT

ANT_HOME D./Softs between my laptop and I/apache-ant-1.9.4

L Install automatically 0
Delete Ant

Add Art

List of Ant installations on this system

Like JDK and Ant, user can configure other connection parameters.

232

Note: Always remember to uncheck the “Install automatically” checkbox. The checkbox should be selected in

case if you wish to download the artifact from the internet.
Configuring Email Notification

Email Notification section is shown in the end of the same webpage. User needs to configure the following

fields:

Click on advanced button to see all the options related to Email Notification.

SMTP server: SMTP Server stores the information about SMTP Server i.e. the IP number or fully
qualified name of the server. For demonstration, In this tutorial, we will use Gmail’s SMTP server.
Default User E-mail Suffix: An email suffix can be provided in this field which could be suffixed with
the username and can be used to send the email notification.

System Admin E-mail Address: Admin E-mail Address is used as a sender email id from which all the
notifications would be sent.

Hudson URL.: If you are likely to publish reports or build information within the Email Notification,
then Hudson URL needs to be provided. Hudson URL will be used to access the reports. A valid URL
needs to be provided, however if all the receivers are connected to the intranet, then the IP address of the
machine hosting Hudson can also be provided.

Use SMTP Authentication: Enabling this option lets the username and password field appear for
authentication purpose.

Use SSL.: User can activate SSL by selecting this option to connect with the SMTP Server.

SMTP Port: User needs to provide the port number in this field which is used to communicate with the
mail Server. If no port numbers are specified, then default port numbers are assigned.

Charset: This field specifies the character set used to compose emails.

As we already mentioned that we would be using Gmail mail server to send email notification in this tutorial,
refer the following screenshots and make the necessary changes in the Email Notification section.

233

E-mail Notification
SMTP server
Default User E-mail Suffix
System Admin E-mail Address
Hudson URL

¥ Use SMTP Authentication

User Name
Password

Use SSL
SMTP Port

Charset

Save

smtp.gmail.com

address not configured yet <nobody@nowhere >

http://115.118.228.192:8090/

shrut.shrivastava.in@gmail.com

v
265

UTF-8

@S0

@9

Test configuration by sending e-mail to System Admin Address

Click on the Save button in order to save all the newly made changes.

Creating Hudson Project

Now that we have installed and configured the Hudson on to our machines, we shall move ahead and create

Hudson Projects. Like, Hudson configuration, we have several configuration options for a Hudson Project. In

this tutorial, we would shed light on the most useful and popularly used options and extensions.

To create and configure a new Hudson Project, follow the steps ahead:

Click on the “New Job” option displayed in the left menu. The following page would open which displays the
options related to project creation and project styles.

= New Job

Job name |

* Build a free-style software job

This is the central feature of Hudson. Hudson will build your job, combining any SCM with any build
system, and this can be even used for something other than software build.

Build multi-configuration job
Sutable for jobs that need a large number of different configurations, such a3 testing on multiple
environments, platform-specific builds, etc.

Monitor an external job

This type of job allows you to record the execution of a process run outside Hudson, even on a
remote machine. This is designed zo that you can use Hudzon as a dashboard of your existing
automation system, See the documentation for more detads.

Copy existing job
Copy from

OK

There are numerous styles in which the project/job can be created. Take a note that project and job can be used
interchangeably as they both tend to mean the same thing.

234

o Build a free-style software job: This is the most commonly used method to create a new Hudson Job.

e Build multi-configuration job: This style of project is used to execute variety of jobs.

« Monitor an external job: This style of project monitors an external job.

« Copy existing job: In case if we have a project similar to an existing project, then this style can be
helpful. All you have to do is to specify the existing job’s name and the replica of this job would be
created.

However, for this tutorial, we would create a free style Hudson project. Type in the name of the job you wish to
create and click on the OK button. Clicking OK will land you to the Job’s configuration page as shown below:

4 Job Configurations

Job name Hudson_Demo

Cascading Job| None

Description

Discard Old Builds
This build is parameterized
Disable Build (No new builds will be executed until the job is re-enabled.)

Execute concurrent builds if necessary

Advanced Job Options

Source Code Management

® None
Subversion

Configuring Hudson Project
Once, we have created the Hudson job, it’s time to configure it. Like Hudson configuration, Hudson Job has
also got various configuration settings. Let us discuss the important ones here.

To be specific, there are namely six types of settings to configure a job:

e General Job Settings: This section allows the user to mention the basic information about the job. User
can submit the job description, disable the job, parameterize the job, trash the older builds and can
execute more than one build for the same job concurrently.

e Advanced Job Options: This section allows the user to configure some advanced options.

235

e Source Code Management: The section allows you to provide the settings related to Source Code
Management system. Select “None” if no SCM is being used. Take a note that the user would be able to
see only those SCM options whose plugin was installed at the time of Hudson installation. In order to
add more SCM to the Hudson, user can visit the Manage Plugins page and can install the required
plugins.

« Build Triggers: This section lets the user decide how to initiate the build execution.

e Build: This section lets the user provide the build mechanism settings.

o Post-build Actions: This section lets the user provide settings to the post build actions that would be
executed once the build execution is completion.

Let us take a step ahead and configure the job with the necessary settings. User can leave the options under
“General Job Settings” and “Advanced Job Options” to their default state.

Configuring Source Code Management

We have been talking much about creation of Hudson project in the above sections of this tutorial. Hudson
project is customarily used with an actual project (Source Code) which is linked to a particular Source Code
Management System. As mentioned in the beginning of this tutorial, Hudson has a great support to variety of
SCMs. To name a few, Hudson supports CVS, Git, SVN etc. Thus, in this tutorial, we will configure
Subversion (SVN) as SCM.

Step 1: Select “Subversion” option. As soon as the user selects Subversion, following options would appear.

Source Code Management

None

®7 Subversion

Modules Repository URL ®
@ Required
Local module directory (optional) |, (2
Repository depth option infinity . &
Ignore externals option (7]
3 r '

Check-out Strategy | Use 'svn update' as much as possible v
Uze tvn update’ whenever possibie. making the buld faster, But tha causes the artfacts from the previcus buld
reman when » new build stars

Repostory browser (Auto) v

Advanced

Step 2: The next step is to provide the SVN’s “Repository URL”. As I have created a local repository, I would

provide a local repository URL. A local repository can be created using Tortoise SVN.
Repository URL file:///D:/Waork/SVN/MyNewRepository

Keep all the other settings in this section to default.

Selecting Build Triggers

236

The next step is to configure the build triggers. Hudson allows you to set triggers to initiate the build execution
process automatically. User can configure the job to build automatically if any other project/job is built.
Alternatively, user can also set the build to execute periodically i.e. scheduling the build execution or user can
also schedule a build to look for fresh commits in the SCM and trigger execution if any or the user can also set
to initiate the build execute whenever there is an update in the maven dependencies provided your project is a
Maven based project.

To set these options, all you have to do is select the desired build trigger. User is also leveraged to select more
than one option at a time.

Build Triggers

Build after other jobs are built
Build periodically

Poll SCM

Build when Maven dependencies have been updated by Maven 3 integration

While selecting any of the above triggers, user might have to provide some additional information specific to
the trigger type.

Build Triggers

¥| Build after other jobs are built
Jobs names

Muliple jobs can be specified fke ‘abe, def’
¥| Build periodically
Schedule

Y| poll SCM
Schedule

Build when Maven dependencies have been updated by Maven 3 integration
« Build after other jobs are built: The name of the jobs which can trigger the execution of this job should
be mentioned.

o Build periodically: The schedule should be mentioned. There is a specific protocol that needs to be
followed to mention the schedule. More information on Schedule is shown below:

237

This field follows the syntax of cron (with minor differences). Specifically, each line consists of S fields
separated by TAB or whitespace:
MINUTE HOUR DOM MONTH DOW

MINUTE Minutes within the hour (0-59)

HOUR The hour of the day (0-23)

DOM The day of the month (1-31)

MONTH The month (1-12)

DOW The day of the week (0-7) where 0 and 7 are Sunday.

To specify multiple values for one field, the following operators are available. In the order of
precedence,

o '*' can be used to specify all valid values.
o 'M-N' can be used to specify a range, such as "1-5"
o 'M<N/X' or "*/X' can be used to specify skips of X's value through the range, such as "*/15" in
the MINUTE field for "0,15,30,45" and "1-6/2" for *1,3,5"
o 'AB,..., 2" can be used to specify multiple values, such as "0,30" or "1,3,5"
Empty lines and lines that start with ‘=’ will be ignored as comments.

In addstion, "@yearly’, ‘@annually’, "©monthly’, '@weekly’, '©daily’, '©midnight’, and "@hourly’ are
supported.

Examples # every minute

® every S mins past the hour
s L
e Poll SCM: User needs to specify the schedule. The field acts same as that of “Build periodically”.
o Build when Maven dependencies have been updated by Maven 3 integration: This section doesn’t
require any input to be submitted.
More information can be found by expanding the Help icons.

If the user doesn’t desire to set any of these build triggers, he/she can decide to build the job/project manually.
All he/she has to do is to click on the “Build Now” link displayed in the left menu.

‘ Back to Main Dashboard

O, staws

-; Changes

Delete Job
2 CSonfigure
Build History (trend)

) for all £ for failures

Invoking Build Steps

Now that we have seen all the basic steps to configure a build project, let us move ahead and add some more
build steps. This section lets the user define his/her build with multiple build steps.

238

Build

Add buid step =

Execute shell
Invoke Maven 2 (Legacy)

Invoke Ant
Execute Windows batch command =
Invoke Maven 3 k

Each of the build steps has its own convention to define and invoke.

For instance, check out the ANT invocation below:

Invoke Ant
AntVersion ANT-1.9.0
Targets

Build File build xml
Properties

Java Options |

Configuring Post-build Actions

At times, it becomes necessary as well as vital to perform certain post build actions. Post build actions are
nothing but some actions those are triggered once the build is executed. User is leveraged to trigger more than
one post build action if he/she desires.

As we all know that the build execution statuses and reports are one of the most important artifacts or exit
criteria for a Software development life cycle. Therefore, Hudson lets you publish the build execution report,

generate documentations, generate executables/archives etc.

Test execution reports can be published and sent across to the stakeholders via Email. Results of this build can
trigger the execution of another build.

Post build Actions are many, let us take a moment to discuss the most basic ones.

239

Post-build Actions

| Aggregate downstream test results
Record fingerprints of files to track usage
Publish JUnit test result report
Archive the artifacts
Publish Javadoc
Build other jobs
Publish Cobertura Coverage Report

E-mail Notification

Save

#1. Aggregate downstream test results — The setting lets the user aggregate the test execution results of this
job and downstream jobs together to produce more impactful test results. All user needs to do is to provide the
name of the downstream job. In case if the user doesn’t wish to provide any downstream job but still wishes to
exploit the setting he can direct the Hudson to find all the downstream projects.

#2. Record fingerprints of files to track usage — The setting can be used by the user to track down where a
particular file was used.

#3. Publish JUnit test result report — The setting allows the user to publish the JUnit test report by reading
and understanding the custom report generated by JUnit. The JUnit test result report provides the user with a
web interface to view the created reports. These reports can be sent over the mails to the stakeholders. To
enable this option, all user is required to do is to provide the path to the custom report generated by JUnit.

Publish JUnit test result report

Test report XMLs report/ TESTS-TestSuites.xml

Filgsat 'ingcludes’ setting that specifies the generated raw XML |
fileset is the worksoace roos.

Y| Retain long standard output/error
Additional test report features Poblials Caat attachineiits
#4. Archive the artifacts — This setting lets the user create artifacts which can be distributed for further use.
The artifact can be produced after every successful build. These artifacts can directly be accessed by the user
over the web interface. Artifacts can be release executables in the form of war files, jar files, zipped or tar
folders.

¥ Archive the artifacts L2

Files to archive project-war &
Validate

Enable auto vahdation for file masks

Excludes

Discard all but the last successful/stable artifact to save disk space

Q99

Compression type GZIp ¥

240

#5. Publish Javadoc — This setting lets you publish the java doc to customers and users on the Hudson web
interface provided your project generates the java doc. To enable this option, user is required to provide the
location of the Java Doc against Javadoc directory.

If user checks mark the option “Retain Javadoc for each successful build”, the newly generated Javadoc would
be saved in the specified folder. Thus, all the Javadocs corresponding to the successful build would be
maintained.

#6. Build other jobs — The setting lets the user trigger the execution of other jobs once this job is executed.
User can trigger execution of more than one job at the same time. The setting can be helpful to execute unit test
and integration test scenarios. User can even set the option to build other jobs even if this job fails (unstable).
#7. Publish Cobertura Coverage Report — Cobertura is a java based testing tool which analyzes the code
coverage of your project i.e. it assess the percentage of code covered by the tests. Thus the setting allows the
user to generate a report with Code coverage analysis. The setting requires a few parameters to be provided
before you can get a fully fledged testing report on code coverage. Take a note that this setting doesn’t come by
default i.e. it requires a plugin to be installed (Which we did at the time of installation as it is generally a part of
the suggested plugins).

! Publish Cobertura Coverage Report
Cobertura xml report pattern

This is a fle name pattern that can be u

@ cobertura s report files (For example with Maven2 use **/target/site/cobertura/coverage.xml). The path is
your SCM with multiple modules, in which case i is relative to the workspace rost. Note that the module roct is SCU-

Consider only stable builds

Fail unheaithy builds

Unhealthy projects wil be faied
Fail unstable builds

Unseable projects wil be faled.
Health auto update

Auto updace threshold for heatth on successful buik

Stability auto update
Auto updace threshoid for stabiley on successful build

Source Encoding AscClI M
Encoding when showing fles

Coverage Metric Targets Methods vt 80.0 @ 0.0 0.0
Lines v || Delete 80.0 @ 0.0 0.0
Conditionals v || Delete 70.0 @ 0.0 0.0

E &80
For the &8 and | rows. leave blank t use the defauk values (ie. 0

#8. E-mail Notification — Email Notification is one of the most important post build action. The option lets the
user send the build notification email to the stakeholders (developers, testers, product owners etc.) by
configuring their email ids. Hudson can send the email when the build is unstable, successful, failed etc. User
can also set E-mail Notification triggers. The notification email can be send to more than one recipient at the
same time just by providing a white-space between their email ids. Refer the below screenshot to check how
these settings can be provided.

(Click on image to enlarge)

¥ E-mail Notification
Recipients

Whitespace-separated list of recipient addresses. May reference build parameters like $p2r21, E-mai will be sent when a
build fails, becomes unstable or returns to stable.

¥ Send e-mail for every unstable build

Send separate e-mails to individuals who broke the build

241

Notes:
1. User can anytime come back to this page and change the settings if required.
2. User can view the information about each option within the help icon associated with it.

3. User can add more post build actions with the help of plugins.
Conclusion:

In this tutorial, we made you acquainted with the concept of Continuous Integration. We also laid emphasis on

its importance during a Software Development life cycle especially in a developer’s or tester’s life.

Next Tutorial #26: Moving ahead in the series, we would discuss about some advanced Selenium
concepts that would directly or indirectly help in optimizing the Automation framework and brings more
visibility to the users. Thus, in the next tutorial, we would discuss about the logging feature, its potential,
debugging capabilities and much more.

242

http://www.softwaretestinghelp.com/log4j-tutorial-selenium-tutorial-26/

Advanced Selenium

Tutorial #26 — Logging in Selenium

Tutorial #27 — Selenium Scripting Tips and Tricks

Tutorial #28 — Database Testing using Selenium WebDriver

Tutorial #29 — Selenium Grid Introduction (Must Read)

Tutorial #30 — Automation Testing Using Cucumber and Selenium Part -1
Tutorial #31 — Integration of Selenium WebDriver with Cucumber Part -2

243

Tutorial #26 — Logging in Selenium

Most Popular Test Automation Frameworks with Pros and Cons of Each — Selenium
Tutorial #20

In the last few Selenium tutorials, we discussed about various commonly and popularly used commands in
WebDriver, handling web elements like Web Tables, Framesand handling exceptions in Selenium scripts.
We discussed each of these commands with sample code snippets and examples so as to make you capable of
using these commands effectively whenever you are encountered with similar situations. Amongst the
commands we discussed in the previous tutorial, few of them owe utmost importance.

As we move ahead in the Selenium series, we would concentrate our focus towards Automation Framework
creation in the next few upcoming tutorials. We would also shed light on various aspects of an Automation
framework, types of Automation frameworks, benefits of using a framework and the basic components that
constitutes an Automation framework.

What is Framework?

A framework is considered to be a combination of set protocols, rules, standards and guidelines that can be
incorporated or followed as a whole so as to leverage the benefits of the scaffolding provided by the
Framework.

Let us consider a real life scenario.
We very often use lifts or elevators. There are a few guidelines those are mentioned within the elevator to be
followed and taken care off so as to leverage the maximum benefit and prolonged service from the system.

Thus, the users might have noticed the following guidelines:

o Keep a check on the maximum capacity of the elevator and do not get onto an elevator if the maximum
capacity has reached.

e Press the alarm button in case of any emergency or trouble.

o Allow the passenger to get off the elevator if any before entering the elevator and stand clear off the
doors.

e In case of fire in the building or if there is any haphazard situation, avoid the use of elevator.

e Do not play or jump inside the elevator.

« Do not smoke inside the elevator.

o Call for the help/assistance if door doesn’t open or if the elevator doesn’t work at all. Do not try to open
the doors forcefully.

244

http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/
http://www.softwaretestinghelp.com/selenium-webdriver-commands-selenium-tutorial-17/
http://www.softwaretestinghelp.com/selenium-tutorial-18/
http://www.softwaretestinghelp.com/exception-handling-framework-selenium-tutorial-19/

There can be many more rules or sets of guidelines. Thus, these guidelines if followed, makes the system more
beneficial, accessible, scalable and less troubled for the users.

Now, as we are talking about “Test Automation Frameworks”, let us move our focus towards them.
Test Automation Framework

A “Test Automation Framework” is scaffolding that is laid to provide an execution environment for the
automation test scripts. The framework provides the user with various benefits that helps them to develop,
execute and report the automation test scripts efficiently. It is more like a system that has created specifically to
automate our tests.

In a very simple language, we can say that a framework is a constructive blend of various guidelines, coding
standards, concepts, processes, practices, project hierarchies, modularity, reporting mechanism, test data
injections etc. to pillar automation testing. Thus, user can follow these guidelines while automating application
to take advantages of various productive results.

The advantages can be in different forms like ease of scripting, scalability, modularity, understandability,
process definition, re-usability, cost, maintenance etc. Thus, to be able to grab these benefits, developers are
advised to use one or more of the Test Automation Framework.

Moreover, the need of a single and standard Test Automation Framework arises when you have a bunch of
developers working on the different modules of the same application and when we want to avoid situations
where each of the developer implements his/her approach towards automation.

Note: Take a note that a testing framework is always application independent that is it can be used with any
application irrespective of the complications (like Technology stack, architecture etc.) of application under
test. The framework should be scalable and maintainable.
Advantage of Test Automation framework
1. Reusability of code
Maximum coverage
Recovery scenario
Low cost maintenance
Minimal manual intervention

o bk~ wn

6. Easy Reporting
Types of Test Automation Framework

Now that we have a basic idea of what is an Automation Framework, in this section we would harbinger you
with the various types of Test Automation Frameworks those are available in the market place. We would also
try shed lights over their pros and cons and usability recommendations.

245

There is a divergent range of Automation Frameworks available now days. These frameworks may differ from
each other based on their support to different key factors to do automation like reusability, ease of maintenance
etc.

Let us discuss the few most popularly used Test Automation Frameworks:
1. Module Based Testing Framework

Library Architecture Testing Framework

Data Driven Testing Framework

Keyword Driven Testing Framework

Hybrid Testing Framework

6. Behavior Driven Development Framework

o~ wn

(click on image to view enlarged)
R © www.SoftwareTestingHelp.com

Frameworks

|
l l l l | l

Module Library Architecture Data Driven Keyword Hybrid BDD
Based Testing Testing Framework Testing Driven Testing Testing Framework
Framework Framework Framework Framework

Test Automation Frameworks

Let us discuss each of them in detail.
But before that | would also like to mention that despite having these framework, user is always leveraged to

build and design his own framework which is best suitable to his/her project needs.
#1) Module Based Testing Framework

Module based Testing Framework is based on one of the popularly known OOPs concept — Abstraction. The
framework divides the entire “Application Under Test” into number of logical and isolated modules. For each
module, we create a separate and independent test script. Thus, when these test scripts taken together builds a
larger test script representing more than one modules.

These modules are separated by an abstraction layer in such a way that the changes made in the sections of the

application doesn’t yields affects on this module.

Module Test Script

246

Module 1 \

Module 2

Larger Test Script
Module .. & i

Module ..

Module n

Pros:

1. The framework introduces high level of modularization which leads to easier and cost efficient
maintenance.
The framework is pretty much scalable
If the changes are implemented in one part of the application, only the test script representing that part
of the application needs to be fixed leaving all the other parts untouched.

Cons:

1. While implementing test scripts for each module separately, we embed the test data (Data with which

we are supposed to perform testing) into the test scripts. Thus, whenever we are supposed to test with a

different set of test data, it requires the manipulations to be made in the test scripts.
#2) Library Architecture Testing Framework

The Library Architecture Testing Framework is fundamentally and foundationally built on Module Based
Testing Framework with some additional advantages. Instead of dividing the application under test into test
scripts, we segregate the application into functions or rather common functions can be used by the other parts of
the application as well. Thus we create a common library constituting of common functions for the application
under test. Therefore, these libraries can be called within the test scripts whenever required.

The basic fundamental behind the framework is to determine the common steps and group them into functions
under a library and call those functions in the test scripts whenever required.

247

Example: The login steps can be combined into a function and kept into a library. Thus all the test scripts those
require to login the application can call that function instead of writing the code all over again.

Common
Library

Login Test Script
—_—

v

Pros:
1. Like Module Based Framework, this framework also introduces high level of modularization which
leads to easier and cost efficient maintenance and scalability too.
2. As we create common functions that can be efficiently used by the various test scripts across the
Framework. Thus, the framework introduces a great degree of re-usability.
Cons:
1. Like Module Based Framework, the test data is lodged into the test scripts, thus any change in the test
data would require changes in the test script as well.

2. With the introduction of libraries, the framework becomes a little complicated.
#3) Data Driven Testing Framework

While automating or testing any application, at times it may be required to test the same functionality multiple
times with the different set of input data. Thus, in such cases, we can’t let the test data embedded in the test
script. Hence it is advised to retain test data into some external data base outside the test scripts.

Data Driven Testing Framework helps the user segregate the test script logic and the test data from each other.
It lets the user store the test data into an external database. The external databases can be property files, xml
files, excel files, text files, CSV files, ODBC repositories etc. The data is conventionally stored in “Key-Value”
pairs. Thus, the key can be used to access and populate the data within the test scripts.

Note: The test data stored in an external file can belong to the matrix of expected value as well as matrix of
input values.

Test Data

Reading
Mechanism
Test data in External Populates Test Script
system
l data I
Compares
Input Expected Actual
Data Data

[Expected Data

248

Example:
Let us understand the above mechanism with the help of an example.

Let us consider the “Gmail — Login” Functionality.

Step 1: First and the foremost step are to create an external file that stores the test data (Input data and Expected

Data). Let us consider an excel sheet for instance.
Chipboa... '= Font it

F21 v £ |

A B C

1 Username |Password |Home Page Messgae
2 |shruti shrivastava |Welcome Shruti

3 1234(5%5" Welcome1234
4
5

Testl23 Test456 Welcome Test123

Step 2: The next step is to populate the test data into Automation test Script. For this purpose several API’s can

be used to read the test data.
1 public void readTD(String TestData, String testcase) throws Exception {

2 TestData=readConfigData(configFileName,"TestData" driver);

3 testcase=readConfigData(configFileName,"testcase" driver);

4 FilelnputStream td_filepath = new FilelnputStream(TestData);

5 Workbook td_work =Workbook.getWorkbook(td_filepath);

6 Sheet td_sheet = td_work.getSheet(0);

7 if(counter==0)

8 {

9 for (inti=1,j=1;i<=td sheet.getRows()-1; i++){

10 if(td_sheet.getCell(0,i).getContents().equalsignoreCase(testcase)){
11 startrow = i;

12 arrayList.add(td_sheet.getCell(j,i).getContents());

13 testdata_value.add(td_sheet.getCell(j+1,i).getContents());}}

14 for (int j = 0, k = startrow +1; k <= td_sheet.getRows()-1; k++){

15 if(td_sheet.getCell(j,k).getContents()==""){

16 arrayList.add(td_sheet.getCell(j+1,k).getContents());

17 testdata_value.add(td_sheet.getCell(j+2,k).getContents()); }}
18 }

19 counter++;

20}
The above method helps to read the test data and the below test step helps the user to type in the test data on the
GUI.

element.sendKeys(obj_value.get(obj_index));

249

Pros:

1. The most important feature of this framework is that it considerably reduces the total number of scripts
required to cover all the possible combinations of test scenarios. Thus lesser amount of code is required
to test a complete set of scenarios.

2. Any change in the test data matrix would not hamper the test script code.

3. Increases flexibility and maintainability

4. Asingle test scenario can be executed altering the test data values.

Cons:

1. The process is complex and requires an extra effort to come up with the test data sources and reading

mechanisms.

2. Requires proficiency in a programming language that is being used to develop test scripts.
#4) Keyword Driven Testing Framework

The Keyword driven testing framework is an extension to Data driven Testing Framework in a sense that it not
only segregates the test data from the scripts, it also keeps the certain set of code belonging to the test script into
an external data file.

These set of code are known as Keywords and hence the framework is so named. Key words are self-guiding as
to what actions needs to be performed on the application.

The keywords and the test data are stored in a tabular like structure and thus it is also popularly regarded as
Table driven Framework. Take a notice that keywords and test data are entities independent of the automation
tool being used.

Populating the values Test Script
Keywords Test

data

4

Example Test case of Keyword Driven Test Framework

STEP NO DESCRIPTION KEYWORD LOCATOR/DATA
Login to
1 | application login
Clickon //*[@id="homepage’]
2 | homepage clickLink
Verify logged in
3 | user verifyLink //*[@id="link’]

In the above example keywords like login, clickLink and verifyLink are defined within the code.
Depending upon the nature of application keywords can be derived. And all the keywords can be reused

250

multiple times in a single test case. Locator column contains the locator value that is used to identify the web
elements on the screen or the test data that needs to be supplied.
All the required keywords are designed and placed in base code of the framework.

Pros:
1. In addition to advantages provided by Data Driven testing, Keyword driven framework doesn’t require
the user to possess scripting knowledge unlike Data Driven Testing.
2. Asingle keyword can be used across multiple test scripts.

1. The user should be well versed with the Keyword creation mechanism to be able to efficiently leverage
the benefits provided by the framework.
2. The framework becomes complicated gradually as it grows and a number of new keywords are

introduced.
#5) Hybrid Testing Framework

As the name suggests, the Hybrid Testing Framework is a combination of more than one above mentioned
frameworks. The best thing about such a setup is that it leverages the benefits of all kinds of associated
frameworks.

Test Script < >
3 | : Keywords | Test
v v v Data

Module Module Module

Common Function Library

Example of Hybrid Framework
Test sheet would contain both the keywords and the Data.

Stepl Navigate to login page navigate

Step2 Enter User Name input //*|@id="username’] | userA
Step3 Enter Password input //*|@id="password’] | password
Stepd Verify Home page verifyUser | //*|@id="User’]

Step5 Verify User link verifylink | link="UserLink' userA
Stepb Logout from the application | clickLink //*|@id="logout’]

In the above example, keyword column contains all the required keywords used in the particular test case and
data column drives all the data required in the test scenario. If any step does not need any input then it can be
left empty.

251

#6) Behavior Driven Development Framework

Behavior Driven Development framework allows automation of functional validations in easily readable and
understandable format to Business Analysts, Developers, Testers, etc. Such frameworks do not necessarily
require the user to be acquainted with programming language. There are different tools available for BDD like
cucumber, Jbehave etc. Details of BDD framework are discussed later in Cucumber tutorial. We have also
discussed details on Gherkin language to write test cases in

Cucumber.

Components of Automation Testing Framework

(click on image to view enlarged)

Automation Testing Framework

Build Tools and Continuous Integration (Repotting)

Test Execution Logging Generated Email
Reports Informatio Exceptions Notification

Execution Environments

;

Common Libraries

Generics Program Logics Data Readers

I

Automation Tool Set
Scripts and resources

Object Test Data Configuration Constant Environment
Repository Files s settings

Test Automation Frameworks www.SoftwareTestingHelp.com

Though the above pictorial representation of a framework is self-explanatory but we would still highlight a few
points.

1. Object Repository: Object Repository acronym as OR is constituted of the set of locators types
associated with web elements.

2. Test Data: The input data with which the scenario would be tested and it can be the expected values
with which the actual results would be compared.

3. Configuration File/Constants/ Environment Settings: The file stores the information regarding the
application URL, browser specific information etc. It is generally the information that remains static
throughout the framework.

252

4. Generics/ Program logics/ Readers: These are the classes that store the functions which can be
commonly used across the entire framework.
5. Build tools and Continuous Integration: These are the tools that aids to the frameworks capabilities to

generate test reports, email notifications and logging information.
Conclusion

The frameworks illustrated above are the most popular frameworks used by the testing fraternity. There are
various other frameworks also in the place. For all the further tutorials we would base on the Data Driven
Testing Framework.

In this tutorial, we discussed about the basics of an Automation Framework. We also discussed about the types
of frameworks available in the market.

Next Tutorial #27: In the next tutorial, we would briefly introduce you with the sample framework, the MS
Excel which would store the test data, excel manipulations etc.

Till then feel free to ask your queries about automation frameworks.

253

http://www.softwaretestinghelp.com/selenium-framework-design-selenium-tutorial-21/

Tutorial #27 — Selenium Scripting Tips and Tricks

Efficient Selenium Scripting and Troubleshoot Scenarios — Selenium Tutorial
#27

In the previous tutorial, we discussed the technical implications while implementing logging in a framework.
We discussed log4j utility at length. We discussed the basic components those constitute log4j from a usability
perspective. With the Appenders and layouts, user is leveraged to choose the desired logging format/pattern and
the data source/location.

In the current 27th tutorial in this comprehensive free selenium online training series, we would shift our focus

towards a few trivial yet important topics that would guide us troubleshoot some recurrent problems. We may

or may not use them in daily scripting but they would be helpful in the long run.

We would discuss some advance concepts wherein we would deal with mouse and keyboard events,
accessing multiple links by implementing lists. So why not let’s just start and briefly discuss these topics with
the help of appropriate scenarios and code snippets.

JavaScript Executors

While automating a test scenario, there are certain actions those become an inherent part of test scripts.

These actions may be:

e Clicking a button, hyperlink etc.

e Typing in a text box

« Scrolling Vertically or Horizontally until the desired object is brought into view

e And many more
Now, it is evident from the earlier tutorials that the best way to automate such actions is by using Selenium
commands.

But what if the selenium commands don’t work?
Yes, it is absolutely possible that the very basic and elementary Selenium Commands don’t work in certain
situations.

That said, to be able to troubleshoot such situation, we shoulder JavaScript executors into the picture.

What are JavaScript Executors?

254

http://www.softwaretestinghelp.com/log4j-tutorial-selenium-tutorial-26/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

org.openga.selenium

java.lang.Object

Interface JavascriptExecutor

Implements

executeScript() executeAsyncScript()

JavascriptExecutor interface is a part of org.openga.selenium and implements java.lang.Object class.

JavascriptExecutor presents the capabilities to execute JavaScript directly within the web-browser. To be able to
execute the JavaScript, certain mechanisms in the form of methods along with a specific set of parameters are

provided in its implementation.

Methods

executeScript (String script, args)

As the method name suggests, it executes the JavaScript within the current window, alert, frame etc (the
window that the WebDriver instance is currently focusing on)

executeAsyncScript (String script, args)
As the method name suggests, it executes the JavaScript within the current window, alert, frame etc (the
window that the WebDriver instance is currently focusing on)

The parameters and import statement are common to both the executor methods.

Parameters

Script — the script to be executed

Argument — the parameters that the script requires for its execution (if any)

Import statement

To be able to use JavascriptExecutors in our test scripts, we need to import the package using the following
syntax:

import org.openga.selenium.JavascriptExecutor;

Sample Code

#1) Clicking a web element

1 // Locating the web element using id

2 WebElement element = driver.findElement(By.id("id of the webelement™));
3

4 /I Instantiating JavascriptExecutor

5 JavascriptExecutor js = (JavascriptExecutor)driver;

6

7 /I Clicking the web element

255

8 js.executeScript("arguments[0].click();", element);

#2) Typing in a Text Box

1 // Instantiating JavascriptExecutor

2 JavascriptExecutor js = (JavascriptExecutor)driver;
3

4 J] Typing the test data into Textbox

5 js.executeScript("document.getElementByld(‘id of the element’).value="test data’;”);

#3) Scrolling down until the web element is in the view
1 WebElement element=driver.findElement(By.xpath("//input[contains(@value, Save")]™));
2

3 /I Instantiating the javascriptExecutor and scrolling into the view in the single test step
4 ((JavascriptExecutor)driver).executeScript("arguments[0].scrollIntoView(true);" ,element);

You may find various other ways of writing down the code for accessing JavascriptExecutors.

Accessing multiple elements in a List

At times, we may come across elements of same type like multiple hyperlinks, images etc arranged in an
ordered or unordered list. Thus, it makes absolute sense to deal with such elements by a single piece of code and
this can be done using WebElement List. Refer the screenshot below to understand the elements | am talking
aboult.

256

Mobile Bill Payments

P 27 =
& airtel BSNL Po M@
Gfrt“hk
Airtel BSNL Tata Docomo GSM
RELIANCE Pocone ‘J
vodafone
Reliance GSM Tata DOCOMO CDMA Vodafone
Data Card Bill Payments
Landline Bill Payments
m
" bh] < > AR I Console HTML <~ | CSS Saipt DOM Net Cookies
¢ Edit div.opera...o.airtel < i < ul < div#partn...content < div.wrape...
= <ul stylem“display: block;">

= <1i>
<a href="airtel-postpaid-mobile-onlir
</1li>

<1l3i>

FERRE

*

In the above image, we see that the various service providers belong to an unordered list. Thus, verification of
click ability and visibility of these elements can be done by a single piece of code by using a list of elements.

Import statement

To be able to use WebElement list in our test scripts, we need to import the package using the following syntax:
import java.util.List;

Sample Code

1 // Storing the list

2 List <WebElement> serviceProviderLinks = driver.findElements(By.xpath("//div[@id="ServiceProvider']//ul//li"));
3

4 /I Fetching the size of the list

5 int listSize = serviceProviderLinks.size();

6 for (int i=0; i<listSize; i++)

7{

8

9 /I Clicking on each service provider link

10 serviceProviderLinks.get(i).click();

11

12 /I Navigating back to the previous page that stores link to service providers

257

13 driver.navigate().back();
14}

There are various requirements under which the lists can be used to verify the elements with suitable
implementation changes.

Handling keyboard and mouse events

Handling Keyboard Events
As also said earlier, there are n numbers of ways to deal with the same problem statement in different contexts.

Thus, at times a necessity arises to deal with a problem by changing the conventional dealing strategy with a
more advance strategy. | have witnessed cases where | could not deal with alerts and pop up etc. by selenium
commands thus | had to opt for different java utilities to deal with it using keyboard strokes and mouse events.

Robot class is one such option to perform keyboard events and mouse events.

Let us understand the concept with the help of a scenario and its implementation.

Scenario:

Let us gather a situation where an unnecessary pop up appears on the screen which cannot be accepted or
dismissed using Alert Interface, thus the only wise option we are left with is to close down the window using
shortcut keys — “Alt + space bar + C”. Let us see how we close the pop up using Robot Class.

Before, initiating the implementation, we should import the necessary package to be able to use Robot class
within our test script.

Import Statement
import java.awt.Robot;

Sample Code

1 /I Instantiating Robot class

2 Robot rb =new Robot();

3

4 /[Calling KeyPress event

5 rb.keyPress(KeyEvent.VK_ALT);

6 rb.keyPress(KeyEvent.VK_SPACE);
7 rb.keyPress(KeyEvent.VK_C);

8
9 // Calling KeyRelease event
10 rb.keyRelease(KeyEvent.VK_C);

11 rb.keyRelease(KeyEvent.VK_SPACE);

258

12 rb.keyRelease(KeyEvent.VK_ALT);

Robot class can also be used to handle mouse events but let us here look at the selenium’s capabilities to handle
mouse events.

Handling Mouse Events
WebDriver offers a wide range of interaction utilities that the user can exploit to automate mouse and keyboard
events. Action Interface is one such utility which simulates the single user interactions.

Thus, we would witness Action Interface to mouse hover on a drop down which then opens a list of options in
the next scenario.

Scenario:

1. Mouse Hover on the dropdown

2. Click on one of the items in the list options
Import Statement
import org.openga.selenium.interactions.Actions;

Sample Code

1 /I Instantiating Action Interface

2 Actions actions=new Actions(driver);

3

4 /' howering on the dropdown

5 actions.moveToElement(driver.findElement(By.id("id of the dropdown™))).perform();
6

7 Il Clicking on one of the items in the list options
8 WebElement subLinkOption=driver.findElement(By.id("id of the sub link™));

9 subLinkOption.click();

Conclusion

In this tutorial, we discussed some advance topics related to efficient scripting and to troubleshoot scenarios
where the user is required to handle mouse and keyboard events. We also discussed how to store more than one
web element in a list. | hope you would be able to troubleshoot these impediments if encountered.

Next Tutorial #28: For the upcoming tutorial in the series, we would discuss the concept of Database testing
using Selenium WebDriver. We would witness the mechanism of database connection, hitting selenium
queries and fetching the results through Selenium WebDriver Code.

259

http://www.softwaretestinghelp.com/database-testing-using-selenium-webdriver-selenium-tutorial-28/

Tutorial #28 — Database Testing using Selenium WebDriver

Database Testing Using Selenium WebDriver and JDBC API — Selenium
Tutorial #28

In our last Selenium tutorial we learned how to troubleshoot some recurrent problems in selenium scripts. We
discussed some advance concepts wherein we would deal with mouse and keyboard events, accessing multiple

links by implementing lists.
Moving ahead with our advance topics in Selenium training series, we would introduce you with the concept

of Database testing using Selenium WebDriver.

We would discuss the basic processes like database connection, executing queries, fetching data and
disconnecting database instances etc. We would also discuss various practical implications where we need
Database testing with automation testing in order to test the complete end-to-end scenarios.

Before moving ahead with the technical implications associated with Automated Database testing. Let us
discuss a few scenarios where we require performing Database testing along with the Automation Testing. But
before that, | would like to affirm here that Database testing is a very peculiar type of testing whereas Selenium
WebDriver is a tool used to simulate and automate user interactions with the Application Ul.

So technically speaking we are not precisely performing Database Testing rather we are testing our application
in conjunction with Database in order to ensure that the changes are reflected at both the ends thereby
identifying defects early.

Absolutely all the web applications need a backend to store the Data. Databases like MySQL, Oracle, and SQL
Server are reasonably popular these days.

Now motioning back to the original topic, let us discuss a few scenarios to exemplify the demand of Database
testing along with Automation Testing.

Consider the following scenarios:

#1) At times, we are required to make sure that the data entered from the Ul is consistently reflected at the
database. Thus we retrieve the information from the Database and verify the retrieved information against the
information supplied from the Ul. For example, registration forms, user data, user profiles, updates and deletes
of user data. Thus, the test scenario to automate can be “To verify that the user’s information is successfully
saved into the database as soon as the user registers in the application”.

#2) Another use case of performing database testing with Selenium WebDriver may arise when the user is
directed to load the test data or expected data from the Database. Thus, in such a case, user would make the

260

http://www.softwaretestinghelp.com/efficient-selenium-scripting-selenium-tutorial-27/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

connection with the Database using a third party API, execute queries to retrieve data from the dataset and then
asserting the data fetched from the Database with the actual data which is populated on the Application Ul.

#3) Another user case is to perform associative Database Testing. Assume that we performed an operation on
the application’s Ul, and we want to test the reflection in the Database. It may be a case that the impacted data
resides in various tables of the database due to association. Therefore it is always advisable to test data
reflection at all the impacted areas.

Selenium like | said simulates the user interactions with the application under test. It can simulate keyboard
events, mouse actions etc. But if the user desires to automate anything outside the vicinity of browser — web
application interactions, then selenium can’t be of much help. Thus we require other tools or capabilities to

perform end —to —end testing.

Thus, in all the above scenarios, we may require to perform Database Testing along with Ul Automation. We
may check business logics by manipulating the data and verifying its reflection. We may also check the
technical aspects of the Database itself like soft delete, field validation etc.

Let us now move ahead with the actual implementation. Before developing Selenium WebDriver scripts to
extract data from the data source, let us create a test data in the database. For this tutorial, we would use
MySQL as a database.

Creation of test data in the Database

If you haven’t downloaded the database yet, download it using the link — “http://dev.mysgl.com/downloads/”.
The user is expected to follow some basic steps to download and install the database.

Once the database is successfully installed, user can launch the MySQL Command Line Prompt which would
look like the following screenshot. The application might ask the user to enter the password. The default

password is “root”.

° C:\Program Files (x86)\MySQU\MySQL Server 5.0\bin\mysqgl.exe

Enteyr password: s

llelcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 4

Server version: 5.8.45-community-nt MySQL Community Edition <(GPL>

or '\h’ for help. Type '\c’ to clear the bhuffer.

Note: User can also find GUI based clients over the internet to connect with the database. To name a few, user

can download and install Query Browser or Work Bench.
Creation of new Database

The next step is to create the test database with few tables and records stored in those tables in order to make
connection with the database and execute queries.

261

http://dev.mysql.com/downloads/

Step 1) Type “show databases” to see all the already available databases

show databases;
¥ ° C:\Program Files (x86)\MySQL\MySQL Server 5.0\bin\mysql.exe
Enter passuword: »exx
lelcome to the MySQL monitor. Commands end with ; or \g.

our MySQL connection id is 4
server version: 5.8.45-conmmunity-nt MySQL Community Edition (GPL)

Type "help;’ or "\h’ for help. Type "\c’ to clear the bhuffer.

ysql> show databases;

Database

information_schena
demo

nysql

test

£ i —
rows in set (0.83 sec)

nysgql>

Step 2) Type “create database user;” to create a database named “user”.

create database user;
° C:\Program Files (x86)\MySQL\MySQL Server 5.0\bin\mysql.exe

demo
nysql
test
o s i inimcaiih
rows in set (B.008 sec)
ysql> create database User;

Query ORI FOWATTECTEACO.I1 sec)

awysgl> show databhases

Database

demo
nysql
tect
user

N

+

.

L]

AT L P PN I A D
information_schema |
'

1]

L]

1]

L]

]

L]

+

+
'
'

+
'
'
'
'
]
'
'
'
'
'
+

S

set (UW.VY sec?)

Take a note that the database name as user is created and can be seen in the list of databases.

Step 3) Type “use user;” to select the newly created database. Also type “show tables;” to view all the tables
available within the user database.

use user;

show tables;

262

° C:\Program Files (x86)\MySQL\MySQL Server 5.0\bin\mysql.exe

mysgql> create database User;
Query OK, 1 row affected (8.61 sec)

mysgl> show datahases;

Databhase
information_schema
demo
mysgl
test
user

e e s

'

'
.
'

'

'

'

)

'

'

'

'

'
-

rows in set (A.00 sec)
1ysgl> use user;
Database changed

nysgl> show tables;
Empty set <(B.00 sec)

(1>

Take a note that Empty set is shown in the result of the “show tables;” query as there were no tables available
within the user database.

Let us now a few tables and add records in them.

Step 4) Type the following command to create a table with 4 fields/columns (userld, userName, userAge,
userAddress).

create table userinfo

(

userld int,

userName varchar(255),

userAge int,

userAddress varchar(255)

);

263

° C:\Program Files (x86)\MySQL\MySQL Server 5.0\bin\mysqgl.exe

mysgl> use user;
Database changed
mysgl> show tables;
Empty set (0.6808 sec>

mysgl> create tabhle userinfo
= A ¢
-2 userld int,
-> userName varchard(255),
-2 userfge int,
-2 userfiddress varchard(255>
-> %
[Query OK, B rows affected (B.11 sec)

mysgl> show tahles;
e e

i Tables_in_user |

i userinfo H

e —————————

1 r»row 1in set <B.BH sec)

1>

The next step is to add some data records in the “userinfo” table.

Step 5) Type the following command to insert data into the table a table for all the four fields 4 fields/columns
(userld, userName, userAge, userAddress).
insert into userinfo (userlD, userName, userAge, userAddress) values (‘1°, ‘shruti’, '25°, ‘Noida’);

To view the added data, type the following command:

select * from userinfo;
= C\Program Files (x86)\MySQL\MySQL Server 5.0\bin\mysql.exe

i+ Tables_in_user |
*

! userinfo
- -— ¢

1 row in set (B.00 sec

awsgl> insert into useri , userName, userfige, userfiddress)
> values <¢'1’, L ., "Noida’)>;

ERARORZE06 CHYODO . gSQL e ALTGUNTE T auay

o connection. Trying to reconnec

onnection id: 7

jurrent database: user

Query OK, 1 rouw affected (8.15 secd

ysgql> select # from userinfo;
+

+
userld userName | userfige | userfiddress

1 shruti H 25 Noida

+

row in set <(B.81 sec)

'
'
+
'
'
*

ysql>

Similarly, you can add more data in your table and can create other tables as well.

264

Now, that we have created our database. We can move ahead and understand the implementation of

automated queries to fetch the records from the database.

As we also iterated earlier, Selenium WebDriver is a tool for Ul Automation. Thus, Selenium WebDriver alone

is ineligible to perform database testing but this can be done using Java Database Connectivity APl (JDBC).
The API lets the user connect and interact with the data source and fetch the data with the help of automated

queries. To be able to exploit the JDBC API, it is required to have Java Virtual Machine (JVM) running on the

system.
JDBC Workflow
Define Get connection Get statement
Database URL, to DB :>
Username etc.
e
Load Microsoft
SQL Server JDBC
driver

JOBC Workfiow

We would keep our focus aligned with the following processes:

1. Creating connection with the database

2. Executing queries and update statements in order to extract/fetch data (CRUD Operations)
3. Using and manipulating the data extracted from the Database in the form of result set. (Result set is a

collection of data organized in the rows and columns)
4. Disconnecting the database connection.

to DB

As said earlier, to be able to test database automatically from our Selenium WebDriver test scripts, we would
connect with the Database via JDBC connectivity within our test scripts. Post to the connection, we can trigger

as many CRUD (Create, Read, Update, and Delete) operations on the Database.

In this tutorial we would discuss “Read operation and its variants” and about their implementation in Selenium

WebDriver script. But prior to that, let us check the test scenario manually using “MySQL command line”.

Scenario

1) Open the Database server and connect to “user” database.
2) List down all the records from the “userinfo” table.
Syntax : select * from userinfo;

265

° C:\Program Files (x86)\MySQU\MySQL Server 5.0\bin\mysql.exe

test :
user H
D N e A S R
rows in set (B.00 sec)

ysql> use user;
Database changed
mysql> show tables;
P ————————

i Tables_in_user
M ilten (R ol el

i userinfo

P ——————————

1 »ow in set <(A.00 sec>

select * from userinfo;

o - - aeve-am an-ws e @

userld userName userfige userfiddress
1
2

Noida
Mumbai

————————————.—

shruti
shrivastava

PR ——
H "

+
'
'
+
'
'
'
+

e E L

'
+
'
'
'
'

- . 2 S - . . s .

rows in set (B.00 sec)

sql>

3) Close the Database connection.
Notice that the read query will list down all the user data present in the userinfo table. The table is consisting of
the following columns.

e userld
e Username
e userAge

e userAddress
The result also shows that there is only a single data set present within the table.

Now, let us execute the same scenario using Java Class.

To be able to access Database, user is leveraged to choose amongst the diverse connector options available to
connect with the Database. Most of the database connectors are freely distributed as “jar” files. As we are using
MySQL as a data source, therefore we are required to download the jar file specific to MySQL.

The jar file can be downloaded from:

here or here.

Step 1: The first and the foremost step is to configure the project’s build path and add “mysql-connector-java-
3.1.13-bin.jar” file as an external library.

Step 2: Create a java class named as “DatabaseTesingDemo”.

Step 3: Copy and paste the below code in the class created in the above step.

266

http://www.java2s.com/Code/Jar/m/Downloadmysqlconnectorjava3114bingjar.htm
http://en.sourceforge.jp/projects/sfnet_wwqjavaproject/downloads/mysql-connector-java-3.1.13-bin.jar/

Code Sample
1 import org.junit.After;
2 import org.junit.Before;

3 import org.junit.Test;
4 import java.sgl.Connection;

5 import java.sql.DriverManager;
6 import java.sql.ResultSet;

7 import java.sql.Statement;

8

9 public class DatabaseTesingDemo {

10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43

// Connection object

static Connection con = null;
/I Statement object

private static Statement stmt;

/I Constant for Database
URL

public static String DB_URL = "jdbc:mysql://localhost:3306/user";
/I Constant for Database Username

public static String DB_USER = "root";
/I Constant for Database Password

public static String DB_PASSWORD = "root";

@Before
public void setUp() throws Exception {

try{
/I Make the database connection

String dbClass = "com.mysql.jdbc.Driver";

Class.forName(dbClass).newlInstance();

// Get connection to DB

Connection con = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD);

/I Statement object to send the SQL statement to the Database
stmt = con.createStatement();

}

catch (Exception e)

{
e.printStackTrace();

@Test
public void test() {

try{
String query = "select * from userinfo";
/I Get the contents of userinfo table from DB

ResultSet res = stmt.executeQuery(query);

267

44 /I Print the result untill all the records are printed

45 Il res.next() returns true if there is any next record else returns false
46 while (res.next())

47 {

48 System.out.print(res.getString(1));
49 System.out.print("\t" + res.getString(2));
50 System.out.print("\t" + res.getString(3));
51 System.out.printIn("\t" + res.getString(4));
52 }

53 }

54 catch(Exception e)

55 {

56 e.printStackTrace();

57 }

58 }

59

60 @After

61 public void tearDown() throws Exception {
62 // Close DB connection

63 if (con !=null) {

64 con.close();

65 }

66 }

67 }

The output of the above code is:

1 shruti 25 Noida

2 shrivastava 55 Mumbai

Read Statement Variants

Where clause with single condition

String query = “select * from userinfo where userld=""+ 1+ “*”;
ResultSet res = stmt.executeQuery(query);

Output:

1 shruti 25 Noida

Where clause with multiple conditions

String Address ="Mumbai”;

String query = “select * from userinfo where userld=""+ 2 + “‘ and userAddress=""+Address+"*";
ResultSet res = stmt.executeQuery(query);

Output:

2 shrivastava 55 Mumbai

Display userld

268

String query = “select userld from userinfo”;

ResultSet res = stmt.executeQuery(query);
Output:

1

2

Display userld with where clause

String Address ="Noida”;

String query = “select userld,userName from userinfo where userAddress=""+Address+""";

ResultSet res = stmt.executeQuery(query);
Output:

2

shrivastava

Thus, in the same way user can execute various queries on the database.

With this, Let us shed some light on result

Result Accessibility Methods:
Method name

String getString()
int getint()
boolean
getBoolean()
float getFloat()
long getLong()
short getShort()
double
getDouble()

Date getDate()

Result Navigation Methods:

accessibility methods also.

Description

Method is used to fetch the string type data from
the result set

Method is used to fetch the integer type data
from the result set

Method is used to fetch the boolean value from
the result set

Method is used to fetch the float type data from
the result set

Method is used to fetch the long type data from
the result set

Method is used to fetch the short type data from
the result set

Method is used to fetch the double type data
from the result set

Method is used to fetch the Date type object
from the result set

269

Method name Description

boolean next() Method is used to move to the next record in
the result set

boolean previous() Method is used to move to the previous record
in the result set

boolean first() Method is used to move to the first record in
the result set

boolean last() Method is used to move to the last record in
the result set

boolean Method is used to move to the specific record
absolute(int in the result set
rowNumber)

Conclusion

Through this tutorial, we tried to make you acquainted with the concept of Automated Database Testing. We
clearly laid emphasis the technical implications and needs of Database Testing.

As our entire series was focused on Selenium, reader may get misled and can create an impression that this
tutorial would teach to perform Database testing using Selenium, but like I mentioned number of times earlier,
anything that lies outside the periphery of Ul testing, cannot be handled by Selenium. Therefore we introduce
Java Database Connectivity (JDBC) API in order to perform Database Testing by embedding the code within
the Selenium WebDriver scripts.

JDBC makes it possible for the java class to connect with the Database, retrieve data from the database or for
the matter of fact perform any of the CRUD operations, manipulate the resultant data and close the connection.

Thus, the tutorial constitutes of the basic sample implementation of the above mentioned process.

Next Tutorial #29: We will move ahead with advanced Selenium topics. In next tutorial we will cover
Selenium GRID — which is used when you have to perform multi browser testing and you have large number of

test cases.

270

http://www.softwaretestinghelp.com/selenium-grid-selenium-tutorial-29/

Tutorial #29 — Selenium Grid Introduction (Must Read)

How to Speed up Test Execution Using Selenium Grid — Selenium Tutorial
#29

We are now close to the end of this comprehensive Selenium tutorials series. Next week, we will conclude this

online Selenium Training series with “effort estimation of Selenium Projects” and “Selenium Interview
questions and answers” tutorials.

Today, in this tutorial we will introduce you with Selenium Grid — a distributed test execution environment
to speed up the execution of a test pass.

What is need of Selenium Grid?
As you go through entire Selenium WebDriver tutorials you will find out WebDriver will execute your test
cases in a single machine.

Here are few problems with such a setup:

1. What if you want to execute your test cases for different Operating Systems?

2. How to run your test cases in different version of same browser?

3. How to run your test cases for multiple browsers?

4. Why a scenario should wait for execution of other test cases even if it does not depend upon any test

cases?

All these problems are addressed in Selenium GRID.
As we proceed with the Selenium course, we will get the idea about how we can overcome to these problems.
Basically Grid architecture is based on master slave architecture. Master machine distributes test cases to
different slave machines.

There are 2 versions of Grid available. Selenium Grid 2.0 is the latest from Selenium. Selenium 1.0 was the
earlier version. Most of the Selenium experts prefer using Selenium Grid 2.0 as it is packed with new features.
Selenium Grid 2.0 supports both Selenium RC and Selenium WebDriver scripts.

Benefits of Selenium Grid:
1. Selenium Grid gives the flexibility to distribute your test cases for execution.
2. Reduces batch processing time.
3. Can perform multi browser testing.
4. Can perform multi OS testing.
Basic terminology of Selenium Grid:

271

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/selenium-webdriver-selenium-tutorial-8/

Hub: Hub is central point to the entire GRID Architecture which receives all requests. There is only one hub in
the selenium grid. Hub distributes the test cases across each node.

Node: There can be multiple nodes in Grid. Tests will run in nodes. Each node communicates with the Hub and
performs test assigned to it.

Selenium Grid

Install Selenium GRID

Step 1: Download Selenium Server jar file from Selenium’s official website which is formerly known as
Selenium RC Server and save it at any location on the local disk.

URL of selenium HQ: http://www.seleniumhg.org/download/

Step 2: Open command prompt and navigate to folder where the server is located. Run the server by using

below command

java -jar selenium-server-standalone-2.41.0.jar -role hub

The hub will use the port 4444 by default. This port can be changed by passing the different port number in
command prompt provided the port is open and has not been assigned a task.

Status can be checked by using the web interface: http://localhost:4444/grid/console
Step 3: Go to the other machine where you intend to setup Nodes. Open the command prompt and run the

below line.
1 java -jar selenium-server-standalone-2.41.0.jar -role node -hub
2 http://localhost:4444/grid/register -port 5556

Run the selenium server in other machines to start nodes.

272

http://www.seleniumhq.org/download/

oL
i

S€" Grid Console v.2.41.0

DefaultRemoteProxy (version : 2.41.0)
id : http://192.168.1.3:4443, OS : mixed OS

Browsers Eeiili[IlE1al]y

WebDriver
veoeeee
v@@@@@

V.8

view config
Browser and Nodes:
After starting hub and nodes in each machine when you will navigate to GRID Console

You will find 5 Chrome, 5 Firefox and 1 IE browser under Browser section like below.

DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:4443, OS : mixed OS

Browsers [KoLlile[iTg1alel}]

WebDriver
veoeeee
v@de@ee@
v: €

view config

This indicates that by default you can use 5 Chrome, 5 Firefox and 1 IE browser.

For Instance if you want to use only IE you can start the node by using below command:

1 java -jar selenium-server-standalone-2.41.0.jar -role webdriver -hub
2 http://localhost:4444/grid/register -port 5556 -browser browserName=iexplore

Verify the browser Type along with other details in GRID Console by clicking on view config.
DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5556, OS : VISTA

Browsers [Eolhlile[Tg=]y

WebDriver

V!@

273

Similarly for Firefox:

1 java -jar selenium-server-standalone-2.41.0.jar -role webdriver -hub

2 http://localhost:4444/grid/register -port 5556 -browser browserName=firefox
DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5556, OS : VISTA

Browsers EolJilile[Tig1e(ely]

ng_Driver
Vi

view config

For Chrome:

1 java -jar selenium-server-standalone-2.41.0.jar -role webdriver -hub

2 http://localhost:4444/grid/register -port 5556 -browser browserName=chrome
DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5556, OS : VISTA

Browsers EoGhlile[llg]y}

WebDriver

v:®

view config

There are few scenarios where you may need browser from each type i.e.: IE, Chrome and Firefox.

For instance you may need to use 1 IE and 1 Firefox and 1 Chrome browser

DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5556, OS : VISTA

Browsers Eoanile[Tr1e(s]y]

WebDriver
V:' ’
V:Q
V:g
view config
1 java -jar selenium-server-standalone-2.41.0.jar -role webdriver -hub

2 http://localhost:4444/grid/register -port 5556 -browser browserName=iexplore

3 -browser browserName=firefox -browser browserName=chrome
maxInstances:

maxInstance is used to limit the number of browser initialization in a node.

274

For example if you want to work with 2 Firefox and 2 IE then you can start the node using maxInstance.

1 java -jar selenium-server-standalone-2.41.0.jar -role webdriver -hub
2 http://localhost:4444/grid/register -port 5556 -browser browserName=firefox,maxInstance=3

Maximum instance can be verified under configuration tab.

DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5556, OS : VISTA

m Configuration

port:5556

serviets:[]

host:192.168.1.3

cleanUpCycle:S000

browserTimeout:0

hubHost:localhost

registerCycle:5000
hub:http://localhost:4444/grid/register
capabilityMatcher:org.openqa.gnd.internal.utils.DefaultCapabilityMatcher
newSessionWaitTimeout:-1
url:http://192.168.1.3:5556
remoteHost:http://192.168.1.3:5556
prioritizer:null

register: true
throwOnCapabilityNotPresent: true
nodePolling: 5000
proxy:org.openga.gnd.selenium. proxy DefaultRemoteProxy
browser:browserName=iexplore, = |,
maxSession: 5

role:webdrniver

jettyMaxThreads:-1

hubPort:4444

timeout: 300000

Similarly other browser instances can be configured using maxInstances.

maxSession:

maxSession is used to configure how many number of browsers can be used parallel in the remote system.

1 java -jar selenium-server-standalone-2.41.0.jar -role webdriver -hub
2 http://localhost:4444/grid/register -port 5556 -browser browserName=chrome,maxInstance=3

3 -browser browserName=firefox,maxInstance=3 —maxSession 3

Similarly you can start multiple nodes and configuration can be verified in the console.

NODE1:

275

DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5557, OS : VISTA

Browsers goLlyile[Ilg1uals]y]

WebDriver
v:&
v: €

NODE2:

DefaultRemoteProxy (version : 2.41.0)

id : http://192.168.1.3:5556, OS : VISTA

Browsers EoGhiil[Ilg1aly

WebDriver
V:’ 4
v:@
Sample Grid Code:
Here | have used TestNG to run sample GRID test case.

Prerequisite: Create Hub and nodes as explained earlier and TestNG should be configured in eclipse.

Here | have taken sample test to login to Gmail and enter username and password

1 public class GridExample {

2 @Test

3 public void mailTest() throwsMalformedURLException{

4 DesiredCapabilities dr=null;

5 if(browserType.equals("firefox™)){

6 dr=DesiredCapabilities.firefox();

7 dr.setBrowserName("firefox");

8 dr.setPlatform(Platform.WINDOWS);

9 Yelse{

10 dr=DesiredCapabilities.internetExplorer();

11 dr.setBrowserName("iexplore™);

12 dr.setPlatform(Platform.WINDOWS);

13 }

14 RemoteWebDriver driver=newRemoteWebDriver(new URL("http://localhost:4444/wd/hub™), dr);
15 driver.navigate().to("http://gmail.com");

16 driver.findElement(By.xpath("//input[@id="Email]")) .sendKeys("username");
17 driver.findElement(By.xpath("//input[@id="Passwd']")) .sendKeys("password");
18 driver.close();

19}

As in the example you have to use RemoteWebDriver if you are using GRID and you have to provide

capabilities to the browser. You have to set the browser and platform as above.

276

http://www.softwaretestinghelp.com/testng-framework-selenium-tutorial-12/

In this example | have used platform as WINDOWS. You can use any platform as per your requirement.
Version of browser can also be set by using dr.setVersion(“version”

For Instance you need to run this test serially in multiple browsers you have to configure your testng.xmi
.Below is the testng.xml suite for above test to run your test serially.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <suite name="GRID SAMPLE TEST" thread-count="2">

3 <test name="GRID TEST WITH SERIAL EXECTION WITH BROWSER IE">
<parameter name ="browserType" value="IE"/>

<classes>

4
5

6 <class name ="GridExample"/>
7 </classes>
8 <ltest>

9

10 <test name="GRID TEST WITH SERIAL EXECTION WITH BROWSER FF ">
11 <parameter name ="browserType" value="firefox"/>

12 <classes>

13 <class name ="GridExample"/>
14 </classes>

15 </test>

16 </suite>

To run the test parallel, you have to change your testng.xml like below.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <suite name="GRID SAMPLE TEST" parllel="tests" thread-count="3">
3 <test name="GRID TEST WITH SERIAL EXECTION WITH BROWSER FF">

4 <parameter name ="browserType" value="firefox"/>

5 <classes>

6 <class name ="GridExample"/>

7 </classes>

8 <ltest>

9 <test name="GRID TEST WITH SERIAL EXECTION WITH BROWSER IE">

10 <parameter name ="browserType" value="1E"/>

11 <classes>

12 <class name ="GridExample"/>
13 </classes>

14 </test>

15 </suite>

Here in the testng.xml you have to specify parameter as parilel=“tests” and thread-count= "3 " describes the

maximum number of threads to be executed in parallel.
Configuration using JSON file:

2717

Grid can also be launched along with its configuration by using json configuration file.

Create a json file for having below configuration. Here | have created a json file named as grid_hub.json

~~

"host™: null,

"port": 4444,

"newSessionWaitTimeout": -1,

"servlets" : [],

"prioritizer": null,

"capabilityMatcher": "org.openga.grid.internal.utils.DefaultCapabilityMatcher",
"throwOnCapabilityNotPresent": true,

"nodePolling": 5000,

O© 00 N O ol W DN P

e
= o

"cleanUpCycle™: 5000,
"timeout": 300000,

"maxSession": 5

e
w N

14}

Start the hub using below command

java -jar selenium-server-standalone-2.41.0.jar -role hub —hubConfig grid_hub.json
Similarly create different json file for different nodes as per required configuration.

Here is an example of json configuration file for node named as grid_node.json

1{

2 "capabilities™:

3

4 {

5 "browserName": "chrome",
6 "maxlInstances": 2

7 }

8 {

9 "browserName™": "firefox",
10 "maxInstances": 2

11 +

12 {

13 "browserName": "internet explorer”,
14 "maxlInstances": 1

15 }

16 1

17 “configuration":

18 {

19 "nodeTimeout":120,

278

20 "port":5555,

21

22 "hubPort":4444,

23 "hubHost":"localhost",
24

25 "nodePolling™:2000,
26

27 "registerCycle":10000,
28 "register":true,

29 "cleanUpCycle™:2000,
30 "timeout":30000,

31 "maxSession":5,

32 }

33}

To start the node
java -jar selenium-server-standalone-2.41.0.jar -role rc —nodeConfig grid_node.json
You can change all the configuration of browser, maxInstances, port, maxSession etc. in the json file.

You can provide browser version, platform in the json config file like below

EEIE)

“browserName”: “chrome”, "version”:"8”, "platform”:” Windows”

}

Conclusion:

It is advisable to use Selenium Grid when you have to perform multi browser testing and you have large
number of test cases.

In this module we covered how to setup Grid hub and nodes along with how to run Grid test cases using
testng.xml and json file.

Next Tutorial #30: Automation testing with Selenium and Cucumber tool. Cucumber is a BDD
testing tool and Framework. We will learn features of Cucumber tool and its usage in real time scenario
including how to integrate Selenium WebDriver with Cucumber.

Please post you queries related to Selenium Grid in comments below.

279

http://www.softwaretestinghelp.com/cucumber-bdd-tool-selenium-tutorial-30/

Tutorial #30 — Automation Testing Using Cucumber and Selenium Part -1

Automation Testing Using Cucumber Tool and Selenium — Selenium Tutorial
#30

In last Selenium tutorial we introduced you to Selenium Gridwhich is a distributed test execution environment
to speed up the execution of a test pass.

Now at the end of this comprehensive Selenium training series we are learning advanced Selenium testingand
related concepts.

In this and the next tutorial we will be introducing you to the Cucumber — a Behavior Driven Development

(BDD) framework which is used with Selenium for performing acceptance testing.

Cucumber Introduction:

Cucumber is a tool based on Behavior Driven Development (BDD) framework which is used to write
acceptance tests for web application. It allows automation of functional validation in easily readable and
understandable format (like plain English) to Business Analysts, Developers, Testers, etc.

Cucumber feature files can serve as a good document for all. There are many other tools like JBehave which
also support BDD framework. Initially Cucumber was implemented in Ruby and then extended to Java
framework. Both the tools support native JUnit.

Behavior Driven Development is extension of Test Driven Development and it is used to test the system rather
than testing the particular piece of code. We will discuss more about the BDD and style of writing BDD tests.

Cucumber can be used along with Selenium, Watir, and Capybara etc. Cucumber supports many other
languages like Perl, PHP, Python, .Net etc. In this tutorial we will concentrate on Cucumber with Java as a
language.

Cucumber Basics:
In order to understand cucumber we need to know all the features of cucumber and its usage.

#1) Feature Files:
Feature files are essential part of cucumber which is used to write test automation steps or acceptance tests. This
can be used as live document. The steps are the application specification. All the feature files ends with .feature

extension.

Sample feature file:

280

http://www.softwaretestinghelp.com/selenium-grid-selenium-tutorial-29/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Feature: Login Functionality Feature

In order to ensure Login Functionality works,

I want to run the cucumber test to verify it is working

Scenario: Login Functionality

Given user navigates to SOFTWARETETINGHELP.COM

When user logs in using Username as “USER” and Password “PASSWORD”

Then login should be successful

Scenario: Login Functionality

Given user navigates to SOFTWARETETINGHELP.COM

When user logs in using Username as “USER1” and Password “PASSWORD1”

Then error message should be thrown

#2) Feature:

This gives information about the high level business functionality (Refer to previous example) and the purpose
of Application under test. Everybody should be able to understand the intent of feature file by reading the first
Feature step. This part is basically kept brief.

#3) Scenario:

Basically a scenario represents a particular functionality which is under test. By seeing the scenario user should
be able to understand the intent behind the scenario and what the test is all about. Each scenario should follow
given, when and then format. This language is called as “gherkin”.

Given: As mentioned above, given specifies the pre-conditions. It is basically a known state.

2. When: This is used when some action is to be performed. As in above example we have seen when the
user tries to log in using username and password, it becomes an action.

3. Then: The expected outcome or result should be placed here. For Instance: verify the login is
successful, successful page navigation.

4. Background: Whenever any step is required to perform in each scenario then those steps needs to be
placed in Background. For Instance: If user needs to clear database before each scenario then those steps
can be put in background.

5. And: And is used to combine two or more same type of action.

Example:

Feature: Login Functionality Feature

Scenario: Login Functionality

Given user navigates to SOFTWARETETINGHELP.COM
When user logs in using Username as “USER”

And password as “password”

Then login should be successful

And Home page should be displayed

281

Example of Background:

Background:

Given user logged in as databases administrator
And all the junk values are cleared

#4) Scenario Outline:

Scenario outlines are used when same test has to be performed with different data set. Let’s take the same
example. We have to test login functionality with multiple different set of username and password.

Feature: Login Functionality Feature

In order to ensure Login Functionality works,

I want to run the cucumber test to verify it is working

Scenario Outline: Login Functionality

Given user navigates to SOFTWARETESTINGHELP.COM

When user logs in using Username as <username> and Password <password>
Then login should be successful

Examples:

|username |password |
[Tom |passwordl |
|Harry |password? |
[Jerry |password3 |
Note:

1. Asshown in above example column names are passed as parameter to When statement.
2. In place of Scenario, you have to use Scenario Outline.
3. Examples are used to pass different arguments in tabular format. Vertical pipes are used to separate two
different columns. Example can contain many different columns.
#5) Tags:
Cucumber by default runs all scenarios in all the feature files. In real time projects there could be hundreds of
feature file which are not required to run at all times.

For instance: Feature files related to smoke test need not run all the time. So if you mention a tag as smokeTest
in each feature file which is related to smoke test and run cucumber test with @SmokeTest tag . Cucumber will
run only those feature files specific to given tags. Please follow the below example. You can specify multiple
tags in one feature file.

Example of use of single tags:

@SmokeTest

Feature: Login Functionality Feature

282

In order to ensure Login Functionality works,

I want to run the cucumber test to verify it is working

Scenario Outline: Login Functionality

Given user navigates to SOFTWARETESTINGHELP.COM

When user logs in using Username as <username> and Password <password>

Then login should be successful

Examples:

|username |password |

[Tom |passwordl |

|[Harry |password2 |

|Jerry |password3 |

Example of use of multiple tags:

As shown in below example same feature file can be used for smoke test scenarios as well as for login test
scenario. When you intend to run your script for smoke test then use @SmokeTest. Similarly when you want
your script to run for Login test use @LoginTest tag.

Any number of tags can be mentioned for a feature file as well as for scenario.

@SmokeTest @LoginTest

Feature: Login Functionality Feature

In order to ensure Login Functionality works,

I want to run the cucumber test to verify it is working

Scenario Outline: Login Functionality

Given user navigates to SOFTWARETETINGHELP.COM

When user logs in using Username as <username> and Password <password>
Then login should be successful

Examples:

|username |password |

[Tom |passwordl |

|[Harry |password2 |

[Jerry |password3 |

Similarly you can specify tags to run specific scenario in a feature file. Please check below example to run
specific scenario.

Feature: Login Functionality Feature
In order to ensure Login Functionality works,
I want to run the cucumber test to verify it is working

283

@positiveScenario

Scenario: Login Functionality

Given user navigates to SOFTWARETETINGHELP.COM

When user logs in using Username as “USER” and Password “PASSWORD”

Then login should be successful

@negaviveScenario

Scenario: Login Functionality

Given user navigates to SOFTWARETETINGHELP.COM

When user logs in using Username as “USER1” and Password “PASSWORD1”

Then error message should throw

#6) Junit Runner:

To run the specific feature file cucumber uses standard Junit Runner and specify tags in @Cucumber. Options.
Multiple tags can be given by using comma separate. Here you can specify the path of the report and type of

report you want to generate.

Example of Junit Runner:

1 import cucumber.api.junit.Cucumber;</pre>

2 import org.junit.runner.RunWith;

3 @RunWith(Cucumber.class)

4 @Cucumber.Options(format={"SimpleHtmIReport:report/smokeTest.html"} tags={"@smokeTest"})

5 Public class JUnitRunner {

6%}

Similarly you can give instruction to cucumber to run multiple tags. Below example illustrates how to use
multiple tags in cucumber to run different scenarios.

1 import cucumber.api.junit.Cucumber;
2 import org.junit.runner.RunWith;

3 @RunWith(Cucumber.class)
4 @Cucumber.Options(format={"SimpleHtmIReport:report/smokeTest.html"} tags={"@smokeTest",”@LoginTest”})

5 Public class JUnitRunner {

6%}

#7) Cucumber Report:

Cucumber generates its own html format. However better reporting can be done using Jenkins or bamboo tool.

Details of reporting are covered in next topic of cucumber.
Cucumber Project Setup:

Detail explanation of cucumber project set up is available separately in next tutorial. Please refer to Cucumber
Tutorial Part2 from more information about project setup. Remember there is no extra software installations
required for cucumber.

284

Implementation of Feature file:
We have to implement these steps in Java in order to test the feature files. Need to create a class which contains
those given, when and then statements. Cucumber uses its annotations and all the steps are embedded in those

A9

annotations (given, when, then).Each phrase starts with so that cucumber understands the start of the step.

Similarly each step ends with “$”. User can use regular expressions to pass different test data. Regular
expressions take data from feature steps and passes to step definitions. The order of parameters depends how
they are passed from feature file. Please refer next tutorial for project setup and mapping between feature files
and java classes.

Example:
Below example is to illustrate how feature files can be implemented.

In this example we have not used any selenium API. This is to just show how cucumber works as standalone
framework. Please follow next tutorial for selenium integration with cucumber.

1 public class LoginTest {

2 @Given(""user navigates to SOFTWARETETINGHELP.COM$")

3 public void navigatePage() {

4 system.out.println(“Cucumber executed Given statement”);

5}

6 @When(""user logs in using Username as \"(.*)\" and Password \"(.*)\"$")
7 public void login(String usename,String password) {

8 system.out.println(“Username is:”’+ usename);

9 system.out.println(“Password is:”+ password);

10 }

@When("~click the Submit
button$")

5 public void click TheSubmitButton()
{

13 system.out.println(“Executing When statement’)
14}

15 @Then("~Home page should be displayed$")

16 public void validatePage() {

11

1

17 system.out.println(“Executing Then statement”)
18}

19 @Then("~ogin should be successful$")

20 public void validateLoginSuccess() {

21 system.out.println(“Executing 2nd Then statement”)

22}

23}

When you execute cucumber runner class, cucumber will start reading feature file steps. For example, when you

execute @smokeTest, cucumber will read Feature step and Given statement of scenario. As soon as cucumber
285

finds Given statement, same Given statement will be searched in your java files. If same step is found in java

file then cucumber executes the function specified for the same step otherwise cucumber will skip the step.
Conclusion:

In this tutorial, we have covered features of cucumber tool and its usage in real time scenario.

Cucumber is a most favorite tool for many projects as it is easy to understand, readable and contains business
functionality.

In the next chapter we will cover how to setup a cucumber — java project and how to integrate Selenium
WebDriver with Cucumber.

286

http://www.softwaretestinghelp.com/selenium-webdriver-cucumber-selenium-tutorial-31/

Tutorial #31 — Integration of Selenium WebDriver with Cucumber Part -2

Integration of Selenium WebDriver with Cucumber — Selenium Tutorial #31

In last tutorial we discussed Cucumber tool, its usage and different features.
Moving ahead in our free Selenium online trainingseries, we will discuss how to set up a cucumber project and
will discuss about integration of selenium WebDriver with Cucumber.

We will set up Cucumber project with Maven. To set up Maven in your system please refer this tutorial on

Maven from the same series.
Cucumber Project Setup:

Step #1: Create New Maven Project:
Right Click -> New -> Others -> Maven -> Maven Project -> Next
Step #2: Now the project will look like this:

[1]
iy

a|i2 com.cucumber.test

(## src/main/java

(% src/main/resources

src/test/java

(8 src/test/resources
> B JRE System Library [J2SE-1.5]
s (= src

(= target

[v] pom.xml

Step #3: Add below dependencies in pom.xml
1 <dependencies>

2 <dependency>

3 <groupld>info.cukes</groupld>

4 <artifactld>cucumber-java</artifactld>

5 <version>1.0.2</version>

6 <scope>test</scope>

7 <ldependency>

8 <dependency>

9 <groupld>info.cukes</groupld>

10 <artifactld>cucumber-junit</artifactld>
11 <version>1.0.2</version>

12 <scope>test</scope>

13 </dependency>

14 <dependency>

15 <groupld>junit</groupld>

16 <artifactld>junit</artifactld>

17 <version>4.10</version>

18 <scope>test</scope>

19 </dependency>

287

http://www.softwaretestinghelp.com/cucumber-bdd-tool-selenium-tutorial-30/
http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/maven-project-setup-for-selenium-selenium-tutorial-24/
http://www.softwaretestinghelp.com/maven-project-setup-for-selenium-selenium-tutorial-24/

20 </dependencies>

Step #4: Create a sample.feature file under src/test/resources.
@smokeTest

Feature: To test my cucumber test is running

| want to run a sample feature file.

Scenario: cucumber setup

Given sample feature file is ready

When I run the feature file

Then run should be successful

Step #5: Create a class under src/test/java which will implement all the steps.
1 public class stepDefinition {
2 @Given(""sample feature file is ready$")

3 public void givenStatment(){

4 System.out.printIn("Given statement executed successfully");
5 1}

6 @When("/1 run the feature file$")

7 public void whenStatement(){

8 System.out.printIn("When statement execueted successfully™);
9 }

10 @Then("run should be successful$™)

11 public void thenStatment(){

12 System.out.printIn("Then statement executed successfully™);
13 }

14}

Step #6: Create a Junit runner to run the test.
1 @RunWith(Cucumber.class)
2 @Cucumber.Options(format={"pretty","html:reports/test-report"},tags= "@smokeTest")

3 public class CucumberRunner {

4}

Provide the path of the report as given here. The reports will store in ‘test-report’ folder under project folder and

“pretty” format specifies the type of report.

Step #7: Junit Result and Test Report:
Below is the report when the cucumber test is successful. Green bar in Junit describes the test is passed.
Similarly red bar describes that test has failed.

288

L Project Explorer gfif JUnit 2 g” u3| Q-
Finished after 0.172 seconds

Runs: 3/3 B Errors: 0 B Failures: 0 _

a Ex} com.cucumber.CucumberRunner [Runner: JUnit4] (0.016s) = Failure Trace
4 Fi) Feature: Sample Feature file (0.016 5)
4 Fii] Scenario: cucumber sample feature run (0.016 5)
g:_} Given sample feature file is ready (0.016 5)
mj When I run the feature file (0.000)
g_; Then run should be successful (0.000 s)

If we want to use default reporting then navigate the path mentioned in Junit Runner. In this case we have given
path as reports->test-reports->index.html.
Open this report in Internet Explorer or in Firefox to verify the result. Below is the sample of the report:

@smokeTest Feature: Sample Feature file
Scenario: cucumber sample feature run
Given sample feature file 1s ready
When I run the feature file
Then run should be successful

Cucumber and Selenium WebDriver:

Cucumber framework can be used to test the web based applications along with Selenium WebDriver. The test
cases are written in simple feature files which are easily understood by managers, non-technical stake holders
and business analysts. And those feature file steps are implemented in step definition file. If you are using
maven then you have to add dependencies for Cucumber and WebDriver.

So here is the sample test case we have implemented using Cucumber and WebDriver. As given below, the
scenario in feature file is self-explanatory.

Feature: Login Feature File

@selenium

Scenario: Login scenario test for Gmail

Given navigate to gmail page

When user logged in using username as “userA” and password as “password”
Then home page should be displayed

WebDriver Implementation in Cucumber stepDefinitions:
1 public class stepDefinition {

2 WebDriver dr;

3 @Given(""navigate to gmail page$")

4 public void navigate(){

289

5 dr=new FirefoxDriver();
6 dr.get("http://www.gmail.com");

[

8 @When ("~user logged in using username as \"(.*)\" and password as \"(.*)\"$")

9 public void login(String username,String password){

10 dr.findElement(By.xpath("//*[@id="Email]")).sendKeys(username);
11 dr.findElement(By.xpath("//*[@id="Passwd']")).sendKeys(password);

12 dr.findElement(By.xpath("//*[@id="signIn']")).click();

13 dr.manage().timeouts().implicitlyWait(20, TimeUnit. SECONDS);

14 }

15 @Then("~home page should be displayed$")

16 public void verifySuccessful(){

17 String expectedText="Gmail";
18 String actualText= dr.findElement(By.xpath("//*[@id="gbqgl']/div/a/span")).getText();
19 Assert.assertTrue("Login not successful”,expectedText.equals(actual Text));

20}

21}

In this test we have used the Firefox as the browser to test the Gmail login functionality.

Clearly WebDriver object is a class variable and used across the class.

Given statement initializes the browser and navigates to the page.

When statement logs into the application using username as “userA” and password as “password”. Both the
values ‘username’ and ‘password’ are passed from feature file and both the values to be used in the same order.
Then Statement only validates the conditions after logging into the application.

This is a sample test describing the usage of Cucumber and Selenium. You can create multilayer architecture
depending upon your project requirement.

Conclusion:
In this Tutorial we have covered most of the Cucumber concepts which includes Cucumber features and its
usage along with WebDriver.

This reduces the complexity of code which is written to design the traditional frameworks like Keyword Driven
and Hybrid Framework. Cucumber is used in most of the project where people follow agile methodology as

Behavior Driven Development is an Agile Software practice.

Next Tutorial #32: We have now completed all technical tutorials from this Selenium training series. Next, we

will post about few important general topics like ‘effort estimation for Selenium projects’ and ‘Selenium
interview questions with answers’.

Please post your queries regarding to Cucumber.

290

http://www.softwaretestinghelp.com/test-estimation-of-selenium-automation-project-selenium-tutorial-32/

Selenium Tips and Interview Preparation

Tutorial #32 — Selenium project test effort estimation
Tutorial #33 — Selenium Interview Questions and Answers

291

Tutorial #32 — Selenium project test effort estimation

7 Factors Affecting Test Estimation of Selenium Automation Project —
Selenium Tutorial #32

In last couple of Selenium tutorials we learned about automation testing using Cucumber and Selenium tool.
We also discussed about integration of selenium WebDriver with Cucumber.

In this tutorial we will discuss about different factors affecting effort estimation of Selenium automation.
Planning and estimation are two most important aspect of a software development life cycle.

I personally feel that in software industry, there are no bullet proof methods of doing anything. Since every
project is exclusive and have different sets of complexity and environmental factors, implementing the
estimation and planning strategy should be a collaborative effort of the individual teams with proper

interventions of seniors and management support.

Before you begin with estimating any project, it is imperial to understand each and every phase that your
project will be going through, so that you can give a correct and a justified estimation.

Estimation can not only be done for the manual testing process, but in this era of automation, estimation
techniques are applied to test automation as well. Now Selenium gaining a momentum and popularity in the
market, | am trying to write about some factors which should be taken into consideration while estimating a
Selenium project.

Let’s Start!!

I am assuming that we are starting the Automation initiative from the scratch and that we have no ready-made
framework available.

Factors affecting estimation of selenium automation
The various factors which effect and which you should consider for estimation of “Selenium” specific project

are explained below:

#1 Scope of the project

Scope typically means identifying the correct test cases for automation. Apply “Divide & rule” strategy to
accomplish it. Break your application in small chunks or modules and analyze each of them to come up with the
appropriate test cases for automation.

The steps involved are:
1. Identify the various factors which will form the basis of identifying the candidate test cases.

292

http://www.softwaretestinghelp.com/cucumber-bdd-tool-selenium-tutorial-30/
http://www.softwaretestinghelp.com/selenium-webdriver-cucumber-selenium-tutorial-31/

2. Break the application into smaller modules
3. Analyze each module to identify the candidate test cases
4. Calculate ROI
For more details of how to identify the correct test case, please see my previous paper: Selection of correct test

cases for Automation
#2 Complexity of the application

Steps involved here are:

1. Determine the Size the application based on the number of test cases that needs to be automated.

2. Size complexity through Fibonacci series.

3. ldentify the verification point and check point of each test case
Here we have to establish the definition of big / medium and small sized application. This definition differs
from an individual / group perspective. How you classify your application, depends can also be dependent upon
the number of test cases.

For example:

If your application has 300 — 500 test cases to automate, you can consider it as small sized application. If the
test cases are over 1500, it can be classified as complex. This factor can be different for different application.
For some, 1500 test cases to automate can be considered as small / medium scaled. So once you have identified
the exact number of test cases, scale it to small / medium or large. Your strategy towards estimating the effort
will hugely dependent on these criteria.

You have to also consider the different check points and verification points for your test case. A test case can
have more than 1 check point but will have only 1 verification point. In case you have more than 1 verification
point, it is recommended to bifurcate into separate test cases. This will also ease your maintenance and
enhancement of your test suite.

#3 Use of supporting tools / technologies
Steps involved here are:

1. Identify the framework and automation needs

2. Based on the needs, analyze and identify the tools to be used.

3. ldentify the dependencies / implications of using the tool.
Selenium alone is not sufficient to build a framework or complete the automation. Selenium (Web driver) will
only script the test case, but there are other tasks as well, like reporting the result, tracking the logs, taking
screen shots etc.

293

http://www.softwaretestinghelp.com/manual-to-automation-testing-process-challenges/
http://www.softwaretestinghelp.com/manual-to-automation-testing-process-challenges/

To achieve these you need separate tools that will be integrated with your framework. So it is important here to
identify these supporting entities which will best suite your requirement and will help to get a positive ROI

#4 Implementing the Framework
Here comes the tricky part J the steps involved are!!

1. Identify the input (pattern in which data is fed in to script) and output (reports / test results) of your
automation suite.
2. Design your input files. This may range from a simple text file to complex excel file. It is basically the
file which will have your test data.
Design the folder structure based on your input parameters and
Implement the reporting feature (either in some excel file or using any tool like ReportNG)
Determine / implement logger in your frame work
Implement the build tool in your framework
7. Implement the unit test framework (Junit or TestNG)
There are many other requirements apart from just scripting in test automation with Selenium, like reading the
data from a file, reporting / tracking the test results, tracking logs , trigger the scripts based on the input
conditions and environment etc. So we need a structure that will take care of all these scripts. This structure is
nothing but your Framework.

© g A~ w

Web applications are complex by nature because it involves lots of supporting tools and technology to
implement. In a similar way, implementing framework in Selenium is also tricky (I will not say complex) as it
involves other tools to integrate. Since we know Selenium is NOT a tool but actually a collection / group of jar
files, it is configured and not “Installed”, Selenium itself is not strong enough to build a complex framework. It
requires a list of third party tools for building a framework.

We have to remember here that there is nothing “Ready-made” in Selenium. For everything, we have to code,
so provisions in estimation should be there for googling the errors and troubleshooting.

Here we have to understand that that Framework building is the most important aspect of your Automation
effort. If your framework is rock solid, maintenance and enhancement becomes easier specially in the era of
Agile, if your framework is good, you can integrate your tests in all the sprints easily.

I won’t be wrong if I say that this particular factor of designing the Framework should be the most important

aspect of estimation. If needed (like in complex application) this factor should be again broken down into a
separate WBS and estimation should be done.

294

#5 Learning & Training

Learning Selenium is a bit different than learning any other automation tool. It basically involves learning a
programming language than just a scripting language (though script language helps while building a framework
, like you want to write a script that would invoke your automated scripts after doing the environment setting
changes).

In case we are combining WebDriver with java, | would say that if one is well versed with core java, they are in
a very good shape to start with selenium automation.

Along with learning java, provisions should be there to learn other technologies like ANT / Maven(for
building), TestNG/jUnit (unit test framework), Log4J(for Logging), reporting (for reporting) etc. this list may
grow based on the level of framework. The more this list grows, the more time it would take.

If the management has decided to go with selenium, these learning activities can be done parallel with the
planning activity. Because there is no limit to learn these technologies, it is suggested to have a definite plan
(syllabus) ready for the team so that they can initiated their learning process in a definite direction and
everybody is in the same page.

Practically speaking, we testers do not have a very much keen in learning a full-fledged programming language
and we feel this is developers piece of cake. But now we have to change this mentality and should consider
learning the programming language to be equally important as learning new testing process. This will not only
increase tester’s knowledge about the language and automation but also will give a chance to understand how
the application works internally which may increase their scope to find new bugs.

#6 Environment setup
Environment set up deals with (not limited to):-

o Setting up the code in the test environment

o Setting up code in production environment

« Writing scripts for triggering the automated tests.

« Developing the logic for reporting

o Establishing the frequency of running the scripts and developing logic for its implementation
o Creating text / excel files for entering the test data and test cases

o Creating property files for tracking the environments and credentials
#7 Coding / scripting and review

Before you actually start writing your tests, there are 2 prerequisites:

295

1. Candidate test cases should be handy

2. Framework is ready
Identify different actions that your web application does. It can be simple actions like navigation, clicking,
entering text; or a complex action like connect to database, handle flash or Ajax. Take one test case at a time,
and identify what all action that particular test case does and estimate hours accordingly for per test case. The
sum of all the hours for the entire test suite will give you the exact number.

Provision should be there for Review as well. The reviews are simple the code review which can be done either
by peer or a developer. Pair programming is the best option which is quick, but if it is not possible, based on the
available resources or organizations review strategy, hours should be allocated for it.

More details about each factor affecting estimation:
Factor #1: Scope
Meaning: Identifying the candidate test cases for automation through the ROI
Steps Involved:
1. Identify the various factors which will form the basis of identifying the candidate test cases.

2. Break the application into smaller modules
3. Analyze each module to identify the candidate test cases
4. Calculate the ROI
Deliverable: List of test cases that needs to automated.
Remarks: It is important to freeze your scope once you go ahead with other steps of estimation.
Factor #2: Complexity
Meaning: Establish the definition of big / medium and small sized application.

Steps Involved:
1. Size the application based on the number of test cases that needs to be automated.
2. Size complexity through Fibonacci series.
3. ldentify the verification point and check point of each test case.

Deliverable: Size of the application — Small, medium or Big.

Number of test cases and their corresponding checkpoint and verification point.

Remarks: Recommended — A test case can have multiple check point but only 1 verification point. If a test case
has more than 1 verification point, it should be bifurcated into a separate test case.

Factor #3: Supporting tools

Meaning: Selenium itself is not strong enough to build a complex framework. It requires a list of third party

tools for building a framework.
Steps Involved:
1. Finalized IDE

296

Finalized unit test tool
Finalized logger
Finalized reporting tool
5. Finalized build tool
Deliverable: List of tools needed to create the framework.

M o

Remarks:
Examples:

Eclipse / RAD — as IDE
e Ant/ Maven — As build tool
e jUnit/ TestNG — as unit test framework
e Log4j—as Logger
e ReportiNG — as reporting tool
o Text files — for tracking the environments / credentials
o Excel files — for tracking the test data
o Perl/ Python — for setting up environment and triggering the test scripts.
Factor #4: Implementing Framework
Meaning: Creation of structure
Steps Involved:
1. Design your input files.
2. Design the folder structure
3. Determine / implement logger in your frame work
4. Implement the build tool in your framework
5. Implement the unit test framework

Deliverable:
o Framework and folder structure created in the IDE.
o Excel sheets containing your input data
« Property files containing environment related data and credentials.
Remarks: This is the most crucial step. It is advisable to include some buffer time while estimating because
some time trouble shooting take more time than expected.
Factor #5: Environment set up
Meaning: Deals with code set up and downloading / preparing for the code deployment

Steps Involved:
1. Prepare the input file and reporting
2. Create the triggering script
Deliverable: Environment ready

297

Remarks: We should try to build our framework in such a way that with least hassle, our code is deployed in to
the said environment / box.

I should not be wrong if | say that with minimal entries into our text files (which have the url and credentials)
our code should be ready to run and ROCK!

Factor #6: Learning & training

Meaning: Learning a programming language and other supporting technologies

Steps Involved: Prepare a plan as per your automation needs and share it with the team and encourage them to
learn and proceed as per the syllabus.

Deliverable: Training Plan and its tracker which will track the progress of the team.

Remarks: Emphasis should be on building logics rather learning syntax.

Factor #7: Coding / scripting and Review

Meaning: Writing the actual test scripts and reviewing them

Steps Involved:
1. Test cases and framework is ready.
2. Take / divide the test cases and convert it into automated scripts and track your progress
Deliverable: Automated test scripts
Remarks: Whole team should participate in writing the test scripts using the implemented framework. So while

estimating, efforts from the whole team should be taken into consideration.
Conclusion:

Having said about all these points, do not forget to include Management overhead and some buffer time in your
final Selenium automation estimation. The best and the proven way to do any estimation is to follow the WBS
(Work Break down Structure) mechanism. This is straight forward and serves the purpose of implementing the
automation estimation needs.

The factors mentioned above are the ones based on my experience, but there can be other entities as well which
might affect the strategy.

The thumb rule here is “Identify certain criteria, divide your modules or test case on those criteria; and
scale it”. Based on your scaled figure — you can come to an accurate estimation.

Next Tutorial #33: We will be concluding our most comprehensive Selenium online training free tutorials
series with last tutorial i.e. “Selenium testing interview questions with answers”.

Let us know if you have any other tips for effort estimation of Selenium projects.

298

http://www.softwaretestinghelp.com/selenium-interview-questions-answers/
http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Tutorial #33 — Selenium Interview Questions and Answers

50 Most Popularly Asked Selenium Interview Questions and Answers —
Selenium Tutorial #33

In this tutorial, we have listed the 50 most popularly asked Selenium interview questions including
Selenium WebDriver interview questions.

A quick note about this Selenium article series before we move to this last tutorial:

This is the last tutorial in our Selenium online training series of 30+ comprehensive tutorials. | hope you all
enjoyed these tutorials and started learning from it. If you are new here please head over to this very first
tutorial in this training series.

Top 50 Selenium Interview Questions and Answers:

Q #1) What is Automation Testing?
Automation testing or Test Automation is a process of automating the manual process to test the
application/system under test. Automation testing involves use to a separate testing tool which lets you create

test scripts which can be executed repeatedly and doesn’t require any manual intervention.

Q #2) What are the benefits of Automation Testing?
Benefits of Automation testing are:

Supports execution of repeated test cases

Aids in testing a large test matrix

Enables parallel execution

Encourages unattended execution

Improves accuracy thereby reducing human generated errors
6. Saves time and money

Q #3) Why should Selenium be selected as a test tool?

ok~ w e

Selenium
1. is free and open source
2. have a large user base and helping communities
3. have cross Browser compatibility (Firefox, chrome, Internet Explorer, Safari etc.)
4. have great platform compatibility (Windows, Mac OS, Linux etc.)
5. supports multiple programming languages (Java, C#, Ruby, Python, Pearl etc.)
6. has fresh and regular repository developments

299

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

7. supports distributed testing
Q #4) What is Selenium? What are the different Selenium components?
Selenium is one of the most popular automated testing suites. Selenium is designed in a way to support and
encourage automation testing of functional aspects of web based applications and a wide range of browsers and
platforms. Due to its existence in the open source community, it has become one of the most accepted tools
amongst the testing professionals.

Selenium is not just a single tool or a utility, rather a package of several testing tools and for the same reason it
is referred to as a Suite. Each of these tools is designed to cater different testing and test environment
requirements.

The suite package constitutes of the following sets of tools:

e Selenium Integrated Development Environment (IDE) — Selenium IDE is a record and playback tool.
It is distributed as a Firefox Plugin.

e Selenium Remote Control (RC) — Selenium RC is a server that allows user to create test scripts in a
desired programming language. It also allows executing test scripts within the large spectrum of
browsers.

e Selenium WebDriver — WebDriver is a different tool altogether that has various advantages over
Selenium RC. WebDriver directly communicates with the web browser and uses its native compatibility
to automate.

e Selenium Grid — Selenium Grid is used to distribute your test execution on multiple platforms and
environments concurrently.

Q #5) What are the testing types that can be supported by Selenium?
Selenium supports the following types of testing:

1. Functional Testing

2. Regression Testing
Q #6) What are the limitations of Selenium?
Following are the limitations of Selenium:

e Selenium supports testing of only web based applications

e Mobile applications cannot be tested using Selenium

o Captcha and Bar code readers cannot be tested using Selenium

e Reports can only be generated using third party tools like TestNG or Junit.

e As Selenium is a free tool, thus there is no ready vendor support though the user can find numerous
helping communities.

300

http://www.softwaretestinghelp.com/selenium-ide-download-and-installation-selenium-tutorial-2/
http://www.softwaretestinghelp.com/selenium-webdriver-selenium-tutorial-8/
http://www.softwaretestinghelp.com/selenium-grid-selenium-tutorial-29/

o User is expected to possess prior programming language knowledge.

Q #7) What is the difference between Selenium IDE, Selenium RC and WebDriver?

Feature

Browser
Compatibility

Record and
Playback

Server
Requirement

Architecture

Object Oriented

Dynamic Finders
(for locating web
elements on a
webpage)

Selenium IDE

Selenium IDE
comes as a
Firefox plugin,
thus it supports
only Firefox

Selenium IDE
supports record
and playback
feature

Selenium IDE
doesn't require
any server to be
started before
executing the
test scripts

Selenium IDE
is a Javascript
based
framework

Selenium IDE
is not an object
oriented tool

Selenium IDE
doesn't support
dynamic
finders

Selenium RC

Selenium RC
supports a
varied range of
versions of
Mozilla
Firefox, Google
Chrome,
Internet
Explorer and
Opera

Selenium RC
doesn't
supports record
and playback
feature

Selenium RC
requires server
to be started
before
executing the
test scripts

Selenium RC is
a JavaScript
based
Framework

Selenium RC is
semi object
oriented tool

Selenium RC
doesn't support
dynamic
finders

WebDriver

WebDriver
supports a
varied range of
versions of
Mozilla
Firefox, Google
Chrome,
Internet
Explorer and
Opera.

Also supports
HtmlUnitDriver
which is a GUI
less or headless
browser.

WebDriver
doesn't support
record and
playback
feature

WebDriver
doesn't require
any server to be
started before
executing the
test scripts

WebDriver
uses the
browser's
native
compatibility to
automation

WebDriver is a
purely object
oriented tool

WebDriver
supports
dynamic
finders

301

Feature
Handling Alerts,

Navigations,
Dropdowns

WAP

(iPhone/Android)

Testing

Listener Support

Speed

Selenium IDE

Selenium IDE
doesn't
explicitly
provides aids to
handle alerts,
navigations,
dropdowns

Selenium IDE
doesn't support
testing of
iPhone/Andriod
applications

Selenium IDE
doesn't support
listeners

Selenium IDE
is fast as it is
plugged in with
the web-
browser that
launches the
test. Thus, the
IDE and
browser
communicates
directly

Selenium RC

Selenium RC
doesn't
explicitly
provides aids to
handle alerts,
navigations,
dropdowns

Selenium RC
doesn't support
testing of
iPhone/Andriod
applications

Selenium RC
doesn't support
listeners

Selenium RC is
slower than
WebDriver as it
doesn't
communicates
directly with
the browser;
rather it sends
selenese
commands over
to Selenium
Core which in
turn

WebDriver

WebDriver
offers a wide
range of
utilities and
classes that
helps in
handling alerts,
navigations,
and dropdowns
efficiently and
effectively.

WebDriver is
designed in a
way to
efficiently
support testing
of
iPhone/Android
applications.
The tool comes
with a large
range of drivers
for WAP based
testing.

For example,
AndroidDriver,
iPhoneDriver

WebDriver
supports the
implementation
of Listeners

WebDriver
communicates
directly with
the web
browsers. Thus
making it much
faster.

302

Feature Selenium IDE Selenium RC WebDriver

communicates

with the

browser.
Q #8) When should I use Selenium IDE?
Selenium IDE is the simplest and easiest of all the tools within the Selenium Package. Its record and playback
feature makes it exceptionally easy to learn with minimal acquaintances to any programming language.
Selenium IDE is an ideal tool for a naive user.

Q #9) What is Selenese?
Selenese is the language which is used to write test scripts in Selenium IDE.

Q #10) What are the different types of locators in Selenium?
Locator can be termed as an address that identifies a web element uniquely within the webpage. Thus, to
identify web elements accurately and precisely we have different types of locators in Selenium:

« ID

e ClassName

o Name

o TagName

e LinkText

o PartialLinkText
e Xpath

e CSS Selector

« DOM

Q #11) What is difference between assert and verify commands?

Assert: Assert command checks whether the given condition is true or false. Let’s say we assert whether the
given element is present on the web page or not. If the condition is true then the program control will execute
the next test step but if the condition is false, the execution would stop and no further test would be executed.
Verify: Verify command also checks whether the given condition is true or false. Irrespective of the condition
being true or false, the program execution doesn’t halts i.e. any failure during verification would not stop the
execution and all the test steps would be executed.

Q #12) What is an Xpath?

Xpath is used to locate a web element based on its XML path. XML stands for Extensible Markup Language
and is used to store, organize and transport arbitrary data. It stores data in a key-value pair which is very much
similar to HTML tags. Both being markup languages and since they fall under the same umbrella, Xpath can be
used to locate HTML elements.

303

http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/
http://www.softwaretestinghelp.com/using-selenium-xpath-and-other-locators-selenium-tutorial-5/

The fundamental behind locating elements using Xpath is the traversing between various elements across the
entire page and thus enabling a user to find an element with the reference of another element.

Q #13) What is the difference between “/” and *“//” in Xpath?

Single Slash “/” — Single slash is used to create Xpath with absolute path i.e. the xpath would be created to start
selection from the document node/start node.

Double Slash “//” — Double slash is used to create Xpath with relative path i.e. the xpath would be created to
start selection from anywhere within the document.

Q #14) What is Same origin policy and how it can be handled?

The problem of same origin policy disallows to access the DOM of a document from an origin that is different
from the origin we are trying to access the document.

Origin is a sequential combination of scheme, host and port of the URL. For example, for a URL http://
http://www.softwaretestinghelp.com/resources/, the origin is a combination of http, softwaretestinghelp.com, 80
correspondingly.

Thus the Selenium Core (JavaScript Program) cannot access the elements from an origin that is different from
where it was launched. For Example, if | have launched the JavaScript Program from
“http://www.softwaretestinghelp.com”, then | would be able to access the pages within the same domain such as
“http://www.softwaretestinghelp.com/resources” or “http://www.softwaretestinghelp.com/istqb-free-updates/”.
The other domains like google.com, seleniumhqg.org would no more be accessible.

So, In order to handle same origin policy, Selenium Remote Control was introduced.

Q #15) When should I use Selenium Grid?

Selenium Grid can be used to execute same or different test scripts on multiple platforms and browsers
concurrently so as to achieve distributed test execution, testing under different environments and saving
execution time remarkably.

Q #16) What do we mean by Selenium 1 and Selenium 2?

Selenium RC and WebDriver, in a combination are popularly known as Selenium 2. Selenium RC alone is also
referred as Selenium 1.

Q #17) Which is the latest Selenium tool?

WebDriver

Q #18) How do I launch the browser using WebDriver?
The following syntax can be used to launch Browser:
WebDriver driver = new FirefoxDriver();

304

WebDriver driver = new ChromeDriver();

WebDriver driver = new InternetExplorerDriver();

Q #19) What are the different types of Drivers available in WebDriver?
The different drivers available in WebDriver are:

o FirefoxDriver

e InternetExplorerDriver

e ChromeDriver

o SafariDriver

e OperaDriver

e AndroidDriver

e IPhoneDriver

e HtmlUnitDriver
Q #20) What are the different types of waits available in WebDriver?
There are two types of waits available in WebDriver:

1. Implicit Wait

2. Explicit Wait
Implicit Wait: Implicit waits are used to provide a default waiting time (say 30 seconds) between each
consecutive test step/command across the entire test script. Thus, subsequent test step would only execute when
the 30 seconds have elapsed after executing the previous test step/command.
Explicit Wait: Explicit waits are used to halt the execution till the time a particular condition is met or the
maximum time has elapsed. Unlike Implicit waits, explicit waits are applied for a particular instance only.
Q #21) How to type in a textbox using Selenium?

User can use sendKeys(“String to be entered”) to enter the string in the textbox.

Syntax:

WebElement username = drv.findElement(By.id(“Email ’));

/[entering username

username.sendKeys(“’sth”);

Q #22) How can you find if an element in displayed on the screen?

WebDriver facilitates the user with the following methods to check the visibility of the web elements. These
web elements can be buttons, drop boxes, checkboxes, radio buttons, labels etc.

1. isDisplayed()

2. isSelected()

3. isEnabled()
Syntax:

305

http://www.softwaretestinghelp.com/selenium-webdriver-waits-selenium-tutorial-15/

isDisplayed():

boolean buttonPresence = driver.findElement(By.id(“gbqfba”)).isDisplayed();

isSelected():

boolean buttonSelected = driver.findElement(By.id(““gbqfba”)).isDisplayed();

isEnabled():

boolean searchlconEnabled = driver.findElement(By.id(“gbqfb”)).isEnabled();

Q #23) How can we get a text of a web element?

Get command is used to retrieve the inner text of the specified web element. The command doesn’t require any
parameter but returns a string value. It is also one of the extensively used commands for verification of
messages, labels, errors etc displayed on the web pages.

Syntax:
String Text = driver.findElement(By.id(“Text”)).getText();
Q #24) How to select value in a dropdown?

Value in the drop down can be selected using WebDriver’s Select class.

Syntax:

selectByValue:

Select selectByValue = new Select(driver.findElement(By.id(“SelectID One”)));
selectByValue.selectByValue(“‘greenvalue”);

selectByVisibleText:

Select selectByVisibleText = new Select (driver.findElement(By.id(*“SelectID Two”)));
selectByVisibleText.selectByVisibleText(“Lime”);

selectBylndex:

Select selectBylIndex = new Select(driver.findElement(By.id(“SelectID Three”)));
selectByIndex.selectBylIndex(2);

Q #25) What are the different types of navigation commands?

Following are the navigation commands:

navigate().back() — The above command requires no parameters and takes back the user to the previous

webpage in the web browser’s history.

Sample code:

driver.navigate().back();

navigate().forward() — This command lets the user to navigate to the next web page with reference to the
browser’s history.

Sample code:

driver.navigate().forward();

306

http://www.softwaretestinghelp.com/selenium-webdriver-waits-selenium-tutorial-15/

navigate().refresh() — This command lets the user to refresh the current web page there by reloading all the
web elements.

Sample code:

driver.navigate().refresh();

navigate().to() — This command lets the user to launch a new web browser window and navigate to the
specified URL.

Sample code:

driver.navigate().to(“https.//google.com”);

Q #26) How to click on a hyper link using linkText?

driver.findElement(By.linkText(“Google™”)).click();

The command finds the element using link text and then click on that element and thus the user would be re-
directed to the corresponding page.

The above mentioned link can also be accessed by using the following command.

driver.findElement(By.partialLinkText(“Goo ”)).click(),
The above command find the element based on the substring of the link provided in the parenthesis and thus
partialLinkText() finds the web element with the specified substring and then clicks on it.

Q #27) How to handle frame in WebDriver?
An inline frame acronym as iframe is used to insert another document with in the current HTML document or

simply a web page into a web page by enabling nesting.

Select iframe by id

driver.switchTo().frame(“ID of the frame*);

Locating iframe using tagName
driver.switchTo().frame(driver.findElements(By.tagName(“iframe ”).get(0));
Locating iframe using index

frame(index)

driver.switchTo().frame(0);

frame(Name of Frame)

driver.switchTo().frame(“‘name of the frame”);
frame(WebElement element)

Select Parent Window

driver.switchTo().defaultContent();

Q #28) When do we use findElement() and findElements()?

307

http://www.softwaretestinghelp.com/selenium-tutorial-18/

findElement(): findElement() is used to find the first element in the current web page matching to the specified
locator value. Take a note that only first matching element would be fetched.

Syntax:

WebElement element = driver.findElements(By.xpath(*//div[@id="example’] //ul//li”)),

findElements(): findElements() is used to find all the elements in the current web page matching to the
specified locator value. Take a note that all the matching elements would be fetched and stored in the list of
WebElements.

Syntax:

List <WebElement> elementList = driver.findElements(By.xpath(*//div[@id="example’] //ul//li"’));

Q #29) How to find more than one web element in the list?

At times, we may come across elements of same type like multiple hyperlinks, images etc arranged in an
ordered or unordered list. Thus, it makes absolute sense to deal with such elements by a single piece of code and
this can be done using WebElement List.

Sample Code
1/ Storing the list
2 List <WebElement> elementList = driver.findElements(By.xpath("//div[@id="example']//ul//li"));

3 I/ Fetching the size of the list

4 int listSize = elementList.size();

5 for (int i=0; i<listSize; i++)

64

7 11 Clicking on each service provider link
8 serviceProviderLinks.get(i).click();

9 // Navigating back to the previous page that stores link to service providers
10 driver.navigate().back();

11}

Q #30) What is the difference between driver.close() and driver.quit command?

close(): WebDriver’s close() method closes the web browser window that the user is currently working on or we
can also say the window that is being currently accessed by the WebDriver. The command neither requires any
parameter nor does is return any value.

quit(): Unlike close() method, quit() method closes down all the windows that the program has opened. Same as
close() method, the command neither requires any parameter nor does is return any value.

Q #31) Can Selenium handle windows based pop up?

Selenium is an automation testing tool which supports only web application testing. Therefore, windows pop up
cannot be handled using Selenium.

Q #32) How can we handle web based pop up?

308

WebDriver offers the users with a very efficient way to handle these pop ups using Alert interface. There are the
four methods that we would be using along with the Alert interface.
e void dismiss() — The accept() method clicks on the “Cancel” button as soon as the pop up window
appears.
« void accept() — The accept() method clicks on the “Ok” button as soon as the pop up window appears.
o String getText() — The getText() method returns the text displayed on the alert box.
« void sendKeys(String stringToSend) — The sendKeys() method enters the specified string pattern into
the alert box.
Syntax:
/I accepting javascript alert
Alert alert = driver.switchTo().alert();
alert.accept();
Q #33) How can we handle windows based pop up?
Selenium is an automation testing tool which supports only web application testing, that means, it doesn’t
support testing of windows based applications. However Selenium alone can’t help the situation but along with
some third party intervention, this problem can be overcome. There are several third party tools available for
handling window based pop ups along with the selenium like AutolT, Robot class etc.

Q #34) How to assert title of the web page?

[Iverify the title of the web page

assertTrue(“The title of the window is incorrect.”,driver.getTitle().equals(*“Title of the page”));

Q #35) How to mouse hover on a web element using WebDriver?

WebDriver offers a wide range of interaction utilities that the user can exploit to automate mouse and keyboard
events. Action Interface is one such utility which simulates the single user interactions.

Thus, In the following scenario, we have used Action Interface to mouse hover on a drop down which then
opens a list of options.

Sample Code:
1 // Instantiating Action Interface
2 Actions actions=new Actions(driver);

3 /I howering on the dropdown
4 actions.moveToElement(driver.findElement(By.id("id of the dropdown™))).perform();

5 // Clicking on one of the items in the list options
6 WebElement subLinkOption=driver.findElement(By.id("id of the sub link"));

7 subLinkOption.click();

Q #36) How to retrieve css properties of an element?
The values of the css properties can be retrieved using a get() method:

309

http://www.softwaretestinghelp.com/handle-alerts-popups-selenium-webdriver-selenium-tutorial-16/

Syntax:

driver.findElement(By.id(“id*)).getCssValue(“‘name of css attribute”);

driver.findElement(By.id(*id“)).getCssValue(*‘font-size”);
Q #37) How to capture screenshot in WebDriver?

1 import org.junit.After;

2 import org.junit.Before;

3 import org.junit. Test;

4 import java.io.File;

5 import java.io.lOException;

6 import org.apache.commons.io.FileUtils;

7 import org.openga.selenium.OutputType;

8 import org.openga.selenium.TakesScreenshot;

9 import org.openga.selenium.WebDriver;

10 import org.openga.selenium.firefox.FirefoxDriver;
11

12 public class CaptureScreenshot {

13 WebDriver driver;

14 @Before

15 public void setUp() throws Exception {

16 driver = new FirefoxDriver();

17 driver.get("https://google.com");

18 }

19 @After

20 public void tearDown() throws Exception {

21 driver.quit();

22}

23

24 @Test

o5 c public void test() throws IOException

26 /I Code to capture the screenshot

27 File scrFile = ((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);
28 /I Code to copy the screenshot in the desired location

29 FileUtils.copyFile(scrFile, newFile("C:\\CaptureScreenshot\\google.jpg™));
30}
31}

Q #38) What is Junit?

Junit is a unit testing framework introduced by Apache. Junit is based on Java.

Q #39) What are Junit annotations?
Following are the Junit Annotations:

e (@Test: Annotation lets the system know that the method annotated as @Test is a test method. There

can be multiple test methods in a single test script.

310

http://www.softwaretestinghelp.com/selenium-junit-framework-selenium-tutorial-11/

o (@Before: Method annotated as @Before lets the system know that this method shall be executed every
time before each of the test method.
e (@After: Method annotated as @After lets the system know that this method shall be executed every
time after each of the test method.
o (@BeforeClass: Method annotated as @BeforeClass lets the system know that this method shall be
executed once before any of the test method.
o (@AfterClass: Method annotated as @AfterClass lets the system know that this method shall be
executed once after any of the test method.
e (@Ignore: Method annotated as @Ignore lets the system know that this method shall not be executed.
Q #40) What is TestNG and how is it better than Junit?
TestNG is an advance framework designed in a way to leverage the benefits by both the developers and testers.
With the commencement of the frameworks, JUnit gained an enormous popularity across the Java applications,
Java developers and Java testers with remarkably increasing the code quality. Despite being easy to use and
straightforward, JUnit has its own limitations which give rise to the need of bringing TestNG into the picture.
TestNG is an open source framework which is distributed under the Apache software License and is readily
available for download.
TestNG with WebDriver provides an efficient and effective test result format that can in turn be shared with the
stake holders to have a glimpse on the product’s/application’s health thereby eliminating the drawback of
WebDriver’s incapability to generate test reports. TestNG has an inbuilt exception handling mechanism which
lets the program to run without terminating unexpectedly.
There are various advantages that make TestNG superior to JUnit. Some of them are:

o Added advance and easy annotations

« Execution patterns can set

o Concurrent execution of test scripts

e Test case dependencies can be set
Q #41) How to set test case priority in TestNG?
Setting Priority in TestNG

Code Snippet

1 package TestNG;

2 import org.testng.annotations.*;
3 public class SettingPriority {

4 @Test(priority=0)

public void method1() {

}

@Test(priority=1)

public void method2() {

}
10 @Test(priority=2)

© 00 ~N o o

311

http://www.softwaretestinghelp.com/testng-framework-selenium-tutorial-12/

11
12

13}

public void method3() {

Test Execution Sequence:
1. Methodl
2. Method?2
3. Method3
Q #42) What is a framework?
Framework is a constructive blend of various guidelines, coding standards, concepts, processes, practices,
project hierarchies, modularity, reporting mechanism, test data injections etc. to pillar automation testing.

Q #43) What are the advantages of Automation framework?

Advantage of Test Automation framework

Reusability of code
Maximum coverage
Recovery scenario

Low cost maintenance
Minimal manual intervention
Easy Reporting

Q #44) What are the different types of frameworks?
Below are the different types of frameworks:
1. Module Based Testing Framework: The framework divides the entire “Application Under Test” into

number of logical and isolated modules. For each module, we create a separate and independent test
script. Thus, when these test scripts taken together builds a larger test script representing more than one
module.

Library Architecture Testing Framework: The basic fundamental behind the framework is to
determine the common steps and group them into functions under a library and call those functions in
the test scripts whenever required.

Data Driven Testing Framework: Data Driven Testing Framework helps the user segregate the test script
logic and the test data from each other. It lets the user store the test data into an external database. The
data is conventionally stored in “Key-Value” pairs. Thus, the key can be used to access and populate the
data within the test scripts.

Keyword Driven Testing Framework: The Keyword driven testing framework is an extension to Data
driven Testing Framework in a sense that it not only segregates the test data from the scripts, it also
keeps the certain set of code belonging to the test script into an external data file.

312

http://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/

5. Hybrid Testing Framework: Hybrid Testing Framework is a combination of more than one above
mentioned frameworks. The best thing about such a setup is that it leverages the benefits of all kinds of
associated frameworks.

6. Behavior Driven Development Framework: Behavior Driven Development framework allows
automation of functional validations in easily readable and understandable format to Business Analysts,
Developers, Testers, etc.

Q #45) How can | read test data from excels?
Test data can efficiently be read from excel using JXL or POl API. See detailed tutorial here.
Q #46) What is the difference between POI and jxI jar?

JIXL jar POI jar

1 JXL supports “.xIs” format i.e. binary POl jar supports all of
based format. JXL doesn’t support these formats
Excel 2007 and “.xIsx” format i.¢.
XML based format

2 JXL API was last updated in the year POl is regularly updated
2009 and released

3 The JXL documentation is not as POI has a well prepared
comprehensive as that of POI and highly

comprehensive
documentation

4 JXL API doesn’t support rich text POl API supports rich
formatting text formatting
5 JXL API is faster than POl API POl API is slower than
JXL API

Q #47) What is the difference between Selenium and QTP?

. Quick Test
Feature Selenium Professional (QTP)
Browser Selenium supports QTP supports Internet
Compatibility almost all the popular Explorer, Firefox and
browsers like Firefox, Chrome. QTP only
Chrome, Safari, Internet supports Windows
Explorer, Opera etc Operating System
Distribution Selenium is distributed QTP is distributed as a
as an open source tool licensed tool and is
and is freely available commercialized
Application Selenium supports QTP supports testing of
under Test testing of only web based both the web based

313

http://www.softwaretestinghelp.com/selenium-framework-design-selenium-tutorial-21/

Quick Test

Feature Selenium Professional (QTP)
applications application and windows
based application
Object Object Repository needs QTP automatically
Repository to be created as a creates and maintains
separate entity Object Repository
Language Selenium supports QTP supports only VB
Support multiple programming Script
languages like Java, C#,
Ruby, Python, Perl etc
Vendor As Selenium is a free Users can easily get the
Support tool, user would not get ~ vendor’s support in case

the vendor’s support in of any issue

troubleshooting issues
Q #48) Can WebDriver test Mobile applications?
WebDriver cannot test Mobile applications. WebDriver is a web based testing tool, therefore applications on the
mobile browsers can be tested.

Q #49) Can captcha be automated?
No, captcha and bar code reader cannot be automated.

Q #50) What is Object Repository? How can we create Object Repository in Selenium?

Object Repository is a term used to refer to the collection of web elements belonging to Application Under Test
(AUT) along with their locator values. Thus, whenever the element is required within the script, the locator
value can be populated from the Object Repository. Object Repository is used to store locators in a centralized
location instead of hard coding them within the scripts.

In Selenium, objects can be stored in an excel sheet which can be populated inside the script whenever required.
That’s all for now.
Hope in this article you will find answers to most frequently asked Selenium and WebDriver Interview

questions. The answers provided here are also helpful for understanding the Selenium basics and advanced
WebDriver topics.

314

Do you have any Selenium Interview questions that are not answered here? Please let us know in comments

below and we will try to answer all.
=> This finishes not just this article but our complete Selenium training series. Check list of ALL 30+

tutorials listed on this page. Please let us know your comments and questions.

*hkhhhkhkhkkkhkhkhkhihhhhhkhhdhkhiirhiiihhiix

315

http://www.softwaretestinghelp.com/selenium-tutorial-1/
http://www.softwaretestinghelp.com/selenium-tutorial-1/

Source:
http://www.softwaretestinghelp.com/category/selenium-tutorials/

As of 2017 Feb 09

316

http://www.softwaretestinghelp.com/category/selenium-tutorials/

